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Within the extended-Hu¨ckel theory we present the influence of carbon 3s orbitals on the band structure of
diamond. 3s orbitals are shown to account for the indirect band gap. The results of EHMO-ASED (atom
superposition and electron delocalization) calculations agree well with orthogonalized plane-wave (OPW),
pseudopotential, and ab initio studies; bond length and bulk modulus are nicely reproduced. For comparison,
calculated bond lengths for a few selected hydrocarbons and for C60 are included.

1. Introduction

The electronic structure, lattice constant, bulk modulus, and
other physical properties of diamond have been extensively
studied and are well-known.1-7 Messmer and Hoffmann have
contributed insight by means of extended-Hu¨ckel molecular
orbital (EHMO) calculations. While Hoffmann focused on the
graphite to diamond conversion,8 Messmer aimed already 25
years ago at the description of the band structure and obtained
good qualitative agreement with ab initio and experimental
studies.9 He accounted for the indirect band gap by a large
contraction of the carbon 2s orbital and by applying a different
Wolfsberg-Helmholz parameterK for s-p-type interactions.
The EHMO method is noted for its conceptual simplicity with
respect to the parameters used, thus allowing a transparent
discussion of the results obtained.10-12 We have therefore
reinvestigated these calculations and have found that inclusion
of contracted 3s orbitals is sufficient to obtain a good description
of the band structure of diamond. In addition, bond length and
bulk modulus as calculated by the EHMO-ASED (atom
superposition and electron delocalization) method compare well
with experimental findings.
For comparison we include bond lengths calculated for a few

selected hydrocarbons and the “buckminsterfullerene” C60 as a
link between the “organic” carbon and the “inorganic” carbon
we meet in diamond.

2. Method

The total energyEtot(R) along the coordinateR is given as a
superposition of the extended-Hu¨ckel13,14 binding energy
∆EEHMO(R) and a two-body electrostatic repulsion term15

Erep(R) between the centersR andâ, respectively:

where

The extended-Hu¨ckel binding energy∆EEHMO(R) is expressed
as

with ∑sbs
0Es

0 being the sum of atomic valence orbital ionization
energies, each of them times the orbital occupation number
bs
0. EEHMO is given as a sum over the one-electron statesEi
times its occupationbi:

s and t indexing the atomic orbitals. The coefficientsci,Rs of
the atomic orbitals are determined by the variation principle,
while the Coulomb integralsHRs,Rs are based on experimental
valence orbital ionization energies (VOIEs).16,17 The off-
diagonal elementsHRs,ât are calculated as

For the Wolfsberg-Helmholz parameterK, we use the weighted
formula in a slightly modified distance-dependent form:

with

The distance-dependent form used in earlier studies15,16,18,19

differs from eq 7 merely in the sense that theK dependence on
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Etot(R) ) ∆EEHMO(R) + Erep(R) (1)

ERep) ∑
R<â

ERepR,â (2)

TABLE 1: Coulomb Integrals Hss and Slater Exponentsús
(K ) 1 Was Used)

element n úns Hss/eV únp Hpp/eV

H 1 1.3 -13.6
C 2 1.71 -21.4 1.625 -11.4
C 3 5.5 3.25

∆EEHMO(R) ) EEHMO(R) - ∑
s

bs
0Es

0 (3)

EEHMO ) ∑
i

biEi (4)

Ei ) ∑
Rs

ci,Rs

2HRs,Rs
+ 2 ∑

Rs<ât

ci,Rs
ci,âtHRs,ât

(5)

HRs,ât
) 1
2
KSRs,ât

(HRs,Rs
+ Hât,ât

) (6)

K ) 1+ ke-(δ/2)(R-d0+|R-d0|) (7)

k) κ + ∆2 - ∆4
κ and ∆ )

HRs,Rs
- Hât,ât

HRs,Rs
+ Hât,ât

(8)
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the internuclear distanceR only holds ifR overcomes the sum
of the orbital radii d0, calculated by the respective Slater
exponents and quantum numbers (cf. eqs 13 and 14 in ref 15).
This avoids the problem ofK growing too large for diffuse
orbitals. κ is not a new parameter but just another way to
express the weighted Wolfsberg-Helmholz parameterK. This
is best seen by inspection of eqs 7 and 8 atR ) d0. The
computational treatment of the solid state remains the same,
but the conception of Bloch sums was introduced to account
for the translational symmetry.19 Calculations were carried out
with the modified programs QCPE11620 and QCPE571,21

applying the parameters given in Table 1.δ was chosen to be
0.35 Å-1 for the molecules and 0.13 Å-1 for diamond,
respectively.

3. Hydrocarbons

The bond lengths of a representative selection of hydrocar-
bons and the “buckminsterfullerene” C60 were determined. In
Table 2 the calculated bond lengths are compared to the gas-
phase geometries. In view of the fact that a single parameter
set has been used, the agreement between computation and
experiment has to be considered good. However, the C-C bond
length in ethane is overestimated. As already discussed in an
earlier study,18 this could be adjusted by optimizing the
parameters, which is not the aim of the present work.

4. Diamond

The diamond lattice (formed by the carbon atoms in a
diamond crystal) consists of two interpenetrating face-centered
cubic Bravais lattices, displaced along the body diagonal of the
cubic cell by one quarter of the diagonal’s length (cf. Figure
1a).22 It can be regarded as a face-centered cubic lattice with
the two-point basis 0 and (a/4)(x̂+ ŷ+ ẑ), wherea is the length
of the cube side. To avoid complicated back-folding,10,11 a
primitive unit cell is used, which is spanned by three vectors

starting in a cube corner (i.e.C1) pointing to the centers of the
adjoining vertices. The corresponding Brillouin zone is depicted
in Figure 1b.23

An intensively discussed physical property of diamond is its
band structure. The band structure calculated along the most
relevant symmetry lines in the first Brillouin zone is shown in
Figure 2. The computed valence bands are in good agreement
with ab initio calculations.24 The conduction band defined by
the pointsL3, Γ15, andX3 also agrees well. The level ordering
(Γ15 below Γ′2) is now widely accepted1,2,24 and contradicts
other tight-binding25 and some pseudopotential calculations.3

The valence band width (Γ1 - Γ′25) is 25.8 eV, and the direct
band gap amounts to 4.8 eV compared to the experimental
values26 of 24.2 ( 1 and 6.0 eV, respectively.27 However,
certain features of the conduction bands are quite poorly
reproduced.Γ′2 lies much too high in energy, and no mini-
mum in the〈100〉 direction can be found. Messmer tried to
account for these features by contracting the 2s orbitals toú2s
) 2.0 and by changing theK value of s-p-type interactions.9

A more general approach is to keep parameters constant but to
augment the basis by carbon 3s-type functions, which is
physically meaningful. The resulting band structure of this
augmented ASED-EHMO calculation is presented in Figure 3.
The numerical values are compiled in the second column of
Table 3. Γ′25 lies at an energy of-8.9 eV. For better
comparison with calculations reported in the literature it is set
to zero.
Little change is observed in the valence band region, which

is not surprising as the 3s orbitals are too high in energy to
significantly mix into the low-lying bands, even though the
bandwidth is shifted up to 27.1 eV. The energy difference
between the two symmetry pointsΓ′25 andΓ15 at the center of
the Brillouin zone and the development of the doubly degenerate
band (Λ3, ∆5) remain unaffected. Dramatic alteration is,
however, found in the conduction band region. Most striking
is the indirect band gap arising along the∆-line at (0, 0, 0)f
(0.35, 0, 0) with an energy separation of∼4.0 eV. Messmer
reports a minimum in the conduction band at 0.5 in the〈100〉
direction of the reciprocal space. An ab initio LCAO band

TABLE 2: Comparison of Experimental and Calculated C-C and C-H Distances of Some Representative Hydrocarbons

C-C CdC CtC -C-H dC-H tC-H

compound expt calc expt calc expt calc expt calc expt calc expt calc

CH4 1.094 1.08
CH3-CH3 1.55 1.64 1.111 1.07
CH2dCH2 1.339 1.33 1.085 1.07
H-CtC-H 1.203 1.24 1.061 1.06
C6H6 1.396 1.40 1.083 1.06
C60

a 1.439 1.45

aWeighted average of the two different bond lengths.

Figure 1. (a) Conventional cubic cell of the diamond lattice. For
clarity, sites corresponding to one of the two interpenetrating face-
centered cubic lattices are unshaded. Nearest neighbor bonds have been
drawn in. The four nearest neighbors of each carbon atom form vertices
of a regular tetrahedron. (b) The first Brillouin zone for the face-
centered cubic lattice. The pointΓ is the center of the zone and
possesses the highest symmetry.K, L, W, andX are points;Λ, ∆, Σ,
andZ lines of high symmetry.

Figure 2. EHMO band structure of diamond without carbon 3s atomic
orbitals.
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structure study by Chaney et al. leads to similar conclusions.24

The experimental value of the indirect band gap determined by
neutron diffraction measurements is 5.46 eV at (0, 0, 0)f (0.78
( 0.02, 0, 0).28 Moreover, we obtain a correct level ordering
at X with X1 below X3. The two lowest bands alongΛ are
relatively flat and ofΛ1 andΛ3 symmetry, respectively. They
cross along this line, in agreement with most pseudopotential2

and ab initio calculations.5

We conclude our study on diamond by calculating two bulk
properties, namely, bond length and bulk modulus. The carbon-
carbon distanceRwas altered in a range from 1.3 to 2.0 Å, and
the energy per unit cellE was sampled at 120 points in the
irreducible Brillouin zone, thus constructing the potential energy
curveE(R). A minimum energy was found atR0 ) 1.6 Å, in
good agreement with the experimental value of 1.55 Å.22

The bulk modulusB is given by29

B) -V(∂2 E
∂V2)T (9)

The volume of the primitive unit cell is one quarter of the
conventional fcc cell; hence

V(R) ) 1
4( 4x3R)3 (10)

whereR is the next neighbor distance. Assuming a harmonic
potential in the region of equilibrium bond length (R≈ R0) we
get

E(R) ≈ kR2 (11)

for the potential energy and finally arrive at the following

equation for the bulk modulus:

B) k

8x3R0
(12)

which holds for diamond and all zincblende-type structures.
With k) 760 J/m2 at a bond length of 1.6 Å, we calculateB)
3.43× 1011 Pa, compared to the experimental value ofBexp )
4.43× 1011 Pa.

5. Conclusions

The results of EHMO-ASED calculations agree well with
OPW-SCF, pseudopotential, and ab initio studies; bond length
and bulk modulus are nicely reproduced. Augmentation of the
basis set by carbon 3s atomic orbitals can account for the indirect
band gap in diamond by maintaining all advantages of the
EHMO theory. Hence, it seems possible that the extension of
the basis set will be successful in other tight-binding calculations
where the description of the conduction band region causes
difficulties.

Acknowledgment. We acknowledge financial support by
the Schweizerische Nationalfonds zur Fo¨rderung der wissen-
schaftlichen Forschung project NF. 20-040598.94/1.

References and Notes

(1) Herman, F.; Kortum, R. L.; Kuglin, C. D.Int. J. Quantum Chem.
1967, 1S, 533.

(2) Saravia, L. R.; Brust, D.Phys. ReV. 1968, 170, 683.
(3) Hemstreet, L. A., Jr.; Fong, C. Y.; Cohen, M. L.Phys.ReV. B 1970,

2, 2054.
(4) Harker, A. H.; Larkins, F. P.J. Phys. C: Solid State Phys. 1979,

12, 2497.
(5) Orlando, R.; Dovesi, R.; Roetti, C.; Saunders, V. R.J. Phys.:

Condens. Matter 21990, 7769.
(6) Fahy, S.; Wang, X. W.; Louie, S. G.Phys. ReV. Lett. 1990, 65,

1478.
(7) Petrillo, C.; Sacchetti, F.Phys. ReV. B 1995, 51, 4755.
(8) Kertesz, M.; Hoffmann, R.J. Solid State Chem. 1984, 54, 313.
(9) Messmer, R. P.Chem. Phys. Lett. 1971, 11, 589.
(10) Hoffmann, R.A Chemist’s View of Bonding in Extended Structures;

Verlag Chemie: Weinheim, 1988.
(11) Hoffmann, R.; Janiak, C.; Kollmar, C.Macromolecules 241991,

3725.
(12) Calzaferri, G.; Rytz, R.J. Phys. Chem. 1995, 99, 12141.
(13) Wolfsberg, M.; Helmholz, L.J. Chem. Phys. 1952, 20, 837.
(14) Hoffmann, R.J. Chem. Phys. 1963, 39, 1397.
(15) Calzaferri, G.; Forss, L.; Kamber, I.J. Phys.Chem. 1989, 93, 5366.
(16) Calzaferri, G.; Marcolli, C.J. Phys. Chem. 1995, 99, 3895.
(17) (a) Mc Glynn, S. P.; Vanquickenborne, L. G.; Kinoshita, M.; Caroll,

D. G. Introduction to Applied Quantum Chemistry; Holt, Rinehart and
Winston, Inc.: New York, 1972. (b) Bash, H.; Viste, A.; Gray, H. B.J.
Chem. Phys. 1966, 44, 10.
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Figure 3. EHMO band structure of diamond with carbon 3s atomic
orbitals.

TABLE 3: Comparison of Band Structures of Diamond
Calculated by Different Methods (All Energies Are Given in
eV. For Better Comparison We SetΓ′25 to Zero)

present work

state I II
OPW-SCFa

PERT
pseudob

potential EHMOc
ab

initiod

Γ1 -25.8 -27.1 -21.0 -27.5 -18.8 -29.9
Γ′25 0.0 0.0 0.0 0.0 0.0 0.0
Γ15 4.8 4.8 7.1 8.4 4.7 13.8
Γ′2 72.5 11.9 14.3 13.1 13.3
X1 -14.3 -15.7 -13.5 -18.4 -10.6
X4 -6.2 -6.2 -5.5 -6.6 -4.4
X1 36.7 10.9 6.0 6.0 7.9
X3 23.2 23.2 21.1 >26.0 16.8
L′2 -19.8 -20.8 -15.2 -22.8 -15.5
L1 -12.0 -12.9 -12.2 -15.6 -8.6
L′3 -3.3 -3.3 -2.0 -3.1 -2.3
L1 52.9 12.4 9.8 7.7 8.7 27.8
L3 11.8 11.8 11.1 9.2 9.1

aReference 1.bReference 30.cReference 9.dReference 5.
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