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Equilibria in zeolites and other microporous materials are discussed. We present anindependent particles in
a box approach, which leads to a thermodynamic description of internal occupation equilibria of the type
ZX i-1 + ZX i+1 a 2ZXi, where Z denotes the framework of the material and X the particles that can interchange
places. The independent particles in a box are defined by considering a crystal consisting of a finite number
of unit cells or boxes each of which can be filled with a specific number of particles. All empty sites in a box
have equal probability to be occupied, independent of the number of particles present, as long as sites are
available. Each time a particle does fall in a box, the probability for a next one to hit this box is reduced by
1 divided by the number of sites available in an empty box. Hence, as soon as a box is filled, the probability
for a particle to hit it becomes zero. The maximum number of particles in the system is equal to the maximum
number of sites in a box multiplied by the number of boxes. This allows equilibrium constants and the decrease
of entropy as a function of the equivalent fraction of exchanging species to be calculated. We show that the
plot of the logarithm of the equilibrium constant versus the equivalent fraction of exchanging species is not
linear and that the nonlinearity is caused by the decrease of entropy. On the basis of this observation, we
suggest the independent particles in a box to be used as a reference for “ideal behavior” and to serve as a
reference for determining activity coefficients. The generalization of the theory leads to the independent
particles in boxes with different sites. It is discussed in detail with regard to two nonequivalent sites
corresponding to the internal equilibria ZX1F1X2F2 a ZX1F+1X2F2-1 in which X1 and X2 are the same species
but occupy site 1 and 2, respectively, of a box. We show the solution of this problem and explain the distribution
of the particles among the different sites as a function of the average exchange degree.

Introduction

Ion exchange equilibria and the distribution of ions, atoms,
or molecules in zeolites and in other microporous materials have
been investigated both by means of experimental and theoretical
methods, some aspects of which are well understood; see, e.g.,
refs 1-15. However, the handling of many relevant cases
remains unsatisfactory, and it is desirable to develop a well-
defined and simple system that can be used as an “ideal case
reference system”. We found that the independent particles in
a box can be used for this purpose. Its consequences have not
been explored so far. We do it now because this well-defined
system leads to considerable insight and improves our under-
standing of microporous material. We consider a crystal
consisting of a finite number of unit cells or boxes each of which
can be filled with a specific number of particles. All empty sites
in a box have equal probability to be occupied, independent of
the number of particles present, as long as sites are available.
Each time a particle does fall in a box, the probability for a
next one to hit this box is reduced by 1 divided by the number
of sites available in an empty box. Hence, as soon as a box is
filled, the probability for a particle to hit it becomes zero. The
maximum number of particles in the system is equal to the
maximum number of sites in a box multiplied by the number
of boxes. In a zeolite, this corresponds to the situation in which
no coordination site is occupied with preference. An example
for which this description provides a good understanding is a
zeolite A in which some of the Na+ have been exchanged by

another monovalent cation M+ such as K+, Ag+, or others,
leading to Na+12-xM+

x[Al 12Si12O48] despite the fact that site
preferences have been reported.16-18 We have recently used it
to study the dependency of the electronic spectra of activated
Ag+

12-xM+
x[Al 12Si12O48] on the exchange degreex.19 Figure 1

illustrates the calculated statistical distribution of silver ions in
the unit cells as a function of the average exchange degreerj,
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Figure 1. Particle distributionθ of a system consisting of equivalent
boxes, each of which contains 12 equivalent sites, as a function of the
average number of particles in a boxrj. The line marked as 0 indicates
the relative number of empty boxes; 1 indicates the relative number of
boxes containing one particle and so on.

18 J. Phys. Chem. B1999,103,18-26

10.1021/jp9827532 CCC: $18.00 © 1999 American Chemical Society
Published on Web 12/17/1998



which is equal tox. The distribution shows, e.g., that the share
of unit cells with one Ag+ increases until an average content
of one Ag+ per unit cell is reached. With an average exchange
degree as low as 1.5 Ag+ per unit cell, the share of cells with
only one Ag+ is substantially smaller already and roughly
corresponds to the sum of the shares with more than one Ag+.

In the present work, we first explain the independent particles
in a box case. We show that the results lead to a thermodynamic
description of the internal occupation equilibrium 1, for which
the equilibrium constants and the change of entropy are
calculated.

We compare the results with the so-called Kielland plot,1 which
has been generally accepted to be useful for discussing activities
in ion exchange equilibria in zeolites, clay minerals, and other
materials; see, e.g., refs 2-6. We propose to substitute the
Kielland plot by the independent particles in a box equation as
a reference for ideal behavior. We then introduce the generaliza-
tion of the theory for boxes with unequal sites and we illustrate
how the fast increasing complexity of the system can be handled
for boxes with two different sites, corresponding to the internal
equilibrium 2 in which X1 and X2 are the same species but
coordinated to the sites 1 and 2, respectively.

Independent Particles in Boxes

We describe microcrystals, each consisting ofNuc unit cells
or boxes, each of which can be filled with up tonbox particles.
All empty sites in a box have equal probability to be occupied,
independent of the numbern of particles present. Its maximum
numbernmax in a crystal is given by

Each time a particle falls in a box the probability for a next
one to hit that box reduces by 1/nbox; hence, once a box is filled,
the probability for a next particle to hit it becomes zero. This is
how we define the independent particles in a box. The reduced
numberθ(r) of particles in the system is defined as

whereNr,i is the number of boxes containingr particles in a
crystal filled withi of them. We assume that a total ofn particles
are already present in our sample and that we add an additional
number∆n of them in a tryi. This means that the number of
empty boxesN0,i-1 reduces toN0,i and the number of boxes
containingr particlesNr,i-1 changes toNr,i

In these equationspr∆n is the probability that boxes contain-
ing r particles vanish by receiving an additional number of

particles∆n andpr-1∆n is the probability that boxes containing
r - 1 particles are transformed into boxes containingr of them.
If ∆n ) 1 particles are added to the sample, this can be
expressed as follows:

or

Using ∆Nr ) Nr,i - Nr,i-1, eqs 4 and 5 become after some
rearrangement:

We express the initial conditions, when all boxes are empty,
as a function of the number of particlesn, the number of
positions in a boxnbox, and the number of boxesNuc.

With these initial conditions, the eqs 9 and 10 can be solved
explicitly. The solution is given in eq 13. Its derivation is given
in the appendix.

This ends the mathematical part of the independent particle
case. Before exploring its meaning, we should add that eq 13
differs from the hypergeometric distribution20 significantly in
that it allows us to calculate equilibrium constants directly while
the hypergeometric distribution does not.

We first investigate a porous nanocrystal consisting of a
certain number of equivalent boxes each of which bearsnbox )
12 equivalent places. We would like to know the distribution
of the particles among the boxes when filling the nanocrystal
by throwing in one particle after the other. Figure 1 shows the
relative number of boxes containing 0,1,2, ...,12 particles, which
is the particle distributionθ, as a function of the reduced particle
numberrj ) n/Nuc. The reduced particle numberrj corresponds
to the average number of particles in a box. An example for
which these results provide a good understanding of experi-
mental observations is a zeolite A in which some of the sodium
cations have been exchanged by another monovalent cation M+

such as K+, Ag+, or others, leading to Na+
12-xM+

x[Al 12Si12O48].
It has recently been used by us to study the dependency of the
electronic spectra of activated silver-containing zeolite A on
the exchange degreex.19 In this study, each pseudo-unit cell
was identified as a box withnbox ) 12 equivalent sites. The
size of the individual zeolite crystals was not important because

pr × 1 ) (nbox - r)
1

nboxNuc - n
(7)

pr )
nbox - r

nboxNuc - n
for n < nboxNuc and nbox g r g 1

(8)

∆N0

∆n
) -p0N0 (9)

∆Nr

∆n
) pr-1Nr-1 - prNr for nbox g r g 1 (10)

N0(0,nbox,Nuc) ) Nuc (11)

Nr(0,nbox,Nuc) ) 0 for nbox g r g 1 (12)

Nr(n,nbox,Nuc) )
nbox!

(nbox - r)!r!

Nuc

(nboxNuc)
nbox

nr(nboxNuc - n)nbox-r,

r ) 0, 1, ...,nbox (13)

Z + ZX2 a 2ZX

ZX + ZX3 a 2ZX2

ZX2 + ZX4 a 2ZX3

·
·
·

·
·
·

ZXnbox-2 + ZXnbox
a 2ZXnbox-1 (1)

ZX1F1X2F2 a ZX1F1+1X2F2-1 (2)

nmax ) nboxNuc (3)

θi(r) )
Nr,i

Nuc
(4)

N0,i ) N0,i-1 - p0∆nN0,i-1 (5)

Nr,i ) Nr,i-1 + pr-1∆nNr-1,i-1 - (pr∆n)Nr,i-1 (6)
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all boxes were assumed to be equal. The results shown in Figure
1 can therefore be interpreted as distribution of the Ag+ ions in
the zeolite A as a function of the exchange degreex, which
takes the same values asrj. We now investigate the thermody-
namic equilibrium of a system consisting ofnbox + 1 species
ZXF, F ) 0,1,2, ...,nbox.

The equilibrium constantsKr are given by

The concentrations of the individual species [ZXF] as a
function of the concentration of free X can be expressed as
follows:21

where K0 is equal to 1 by definition andA0 is the total
concentration of the ZXF species.

The total concentration of bound X species can be expressed
as

The equilibrium 14 can be compared with the independent
particles in a box if we use the ratio between the two equilibrium
constants, e.g.,Kr andKr+1, which we abbreviate as KBr.

This describes the following equilibria that correspond to the
‘internal occupation equilibrium” of the material.

The equilibrium constants KBr can be calculated because the
number of boxes containingr particles are directly proportional
to the concentration of the ZXF species. Thus we obtain

Inserting the solution forNr(n,nbox,Nuc) given in eq 13 leads
after some rearrangement to the following astonishingly simple
result:

and therefore to

From eq 16 it is obvious that multiplying eachKr by the same
constant does not affect the concentrations [ZXF] of the
individual species. We can therefore chooseK1 ) 1 without
loss of generality. This means that not only the equilibrium
constants KBr can be calculated from the solution of the
independent particles in a box but, more importantly, alsoKr.
Using eqs 16-18 and 23 it is possible to calculate the
concentrations [ZXF]. We illustrate this fornbox ) 12 in Table
1, where the equilibrium constants and the entropy change
calculated from eqs 23 and 25 are reported, and in Figure 2,
where we show the concentrations of the individual species ZXF
as a function of the free X concentration, normalized by the
maximum of [X]tot. The progress of the concentrations of the
ZXF species with largeF illustrates the constraints imposed on
the system by the decreasing entropy with increasingF. Since
there is no enthalpy change involved, the change of the entropy
∆Sr can be expressed by eq 25.

We now compare the results with selectivity constants as
used, for example, for describing zeolite ion exchange equilib-
ria.6 We investigate monovalent ions and activity coefficients
of one, because only this case can be directly compared with
the independent particles in a box.

TABLE 1: Equilibrium Constants Kr Calculated from Eq 23 and Entropy Change in J/(K mol)

r 1 2 3 4 5 6 7 8 9 10 11 12

Kr 1.0 0.458 0.278 0.178 0.133 0.097 0.071 0.052 0.037 0.025 0.015 6.94×10-3

∆Sr 0.0 -6.49 -10.6 -13.9 -16.8 -19.4 -21.9 -24.6 -27.4 -30.7 -34.8 -41.3

Z + X a ZX K1

ZX + X a ZX2 K2

ZX2 + X a ZX3 K3

·
·
·

·
·
·

ZXnbox-1 + X a ZXnbox
Knbox

(14)
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i
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2
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·
·
·

·
·
·

ZXnbox-2 + ZXnbox
a 2ZXnbox-1 KBnbox-1 (20)

KBr )
[Nr(n,nbox,Nuc)]

2

[Nr+1(n,nbox,Nuc)][Nr-1(n,nbox,Nuc)]
(21)

KBr ) r + 1
r (nbox - r + 1

nbox - r ) (22)

Kr+1 ) Kr[r + 1
r (nbox - r + 1

nbox - r )]-1

(23)

∆Gr ) -RT log Kr (24)

∆Sr ) R log Kr (25)
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The selectivity constants KSr are defined as follows:

It is easy to see that the ratio between two of these selectivity
constants can be identified with the equilibrium constants KBr,
similar to the case in in eq 19.

This means that we can also calculate the selectivity constants
for monovalent ion exchange of a zeolite.

This corresponds to eq 23, which means that all consequences
derived from it also apply to the ion exchange equilibrium 26.
Zeolite ion exchange equilibria have often been inspected by
means of the so-called Kielland plot.1 The reasoning of Jacob
Kielland was that the influence of the activity coefficientsγZM

andγZN in equilibria of the following type

can be taken into account by a linear relation:
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Figure 2. Illustration of the equilibrium 14 for a system consisting of
13 species ZXF, F ) 0, 1, 2, ..., 12. (top) Relative concentrations of
the ZXF species and total concentration [X]tot of bound X species,
normalized by the maximum of [X]tot, versus the concentration of free
X. (bottom) Relative concentrations of the ZXF species (F ) 0, 1, ...,
12) versus the average number of particles in a boxrj.
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·
·
·

·
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, r ) 1, 2, ...,nbox (27)
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KSr+1
)
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2

[ZYnbox-(r-1)Xr-1][ZY nbox-(r+1)Xr+1]
(28)

KSr+1 ) KSr[r + 1
r (nbox - r + 1

nbox - r )]-1

(29)

ZM + N a ZN + M Ka (30)

aZnaM

a a
) log

[N]ZaM

[M] a
+ C([M] Z - [N]Z) (31)
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eaZN, aZM, aN andaM are the activities of the corresponding
ies. [M]Z and [N]Z are the concentrations of M and N in
eolite Z, andC is an empirical constant. This equation has
later used in the following form:4,6

eb is an empirical constant,K′a is the corrected selectivity
tant, andΘZ is the equivalent fraction of exchanging species

the systems discussed in this work, the sum [N]Z + [M] Z

onstant andΘZ is therefore equal to the exchange degree
hich is always defined in an analogous manner as we
ined for the example Na+

12-xM+
x[Al 12Si12O48], divided by

aximum number of places per unit cellnbox.

e thus write the Kielland equation for the equilibrium 26
llows:

ea andb are empirical parameters. The equivalent to the
nd plot of the independent particles in a box has the
ing form:

e derivative of KSr+1 with respect tor is obviously not a
tant, which means that the equivalent 37 to the Kielland
is not linear. In Figure 3, we illustrate how log KSr+1

ges as a function ofr and we compare this with the linear
ion 36 for which the parametersa andb have been adjusted
eq 37 as well as possible. We see that the deviation from
rity of 37 is small, in the range between 0.1< ΘZ < 0.9,
e the best experimental data are available. Since the activity

ZM N Z N
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coefficients of the independent particles in a box are equal to
1, it is not justified to use any nonvanishing parameterb for
calculating activity coefficients. In the present case, the value
of the parameterb ) 0.364 is due to the decrease of entropy
with increasing equivalent fraction of exchanging species (see
Table 1). While 36 is a purely empirical equation with no
theoretical justification, 37 is the result of a well-defined and
simple situation. We therefore suggest that 37 should be used
in further studies as a reference for “ideal behavior” and that it
is better suited as a basis for defining activity coefficients than
the original Kielland equation.

Boxes with Two Different Sites

The sites provided by the unit cell of a microporous material
for an ion, an atom, or a molecule are often not equivalent.
The interaction of the intercalated species at one site can be
stronger than that at another. Such sites can be distinguished
by assigning them different occupation probabilities. We
therefore devise a system consisting ofNuc boxes, each of which
can be filled with up tonbox particles, as in the previous section.
Now, however, m1 particle positions have an occupation
probability q1 andm2 haveq2. The different particle positions
correspond to different sitesσ ) 1,2 located in the same box.
The following relations hold:

Each time a particle falls in a box on siteσ, the probability
for a next one to hit that box on siteσ decreases by 1/mσ. This
means that once siteσ of this box is filled, the probability for
a next particle to hit this site becomes zero.

We assume that a total ofn ) n1 + n2 particles are already
present in our sample.n1 are the number of particles on site 1
andn2 those on site 2. Adding∆n ) 1 particles to the sample
in a try i causes the number of empty boxesN0,0,i-1 to reduce
to N0,0,i while the number of boxesNr1,r2,i-1 containing (r1, r2)
particles on sites 1 and 2 change toNr1,r2,i, wherer1 ) 0, 1, ...,
m1 andr2 ) 0, 1, ...,m2. This can be expressed in an analogous
way as we did in eqs 5 and 6

In these equations,p1,r1 + p2,r2 is the probability that boxes
with an occupation (r1,r2) vanish by receiving an additional
particle on site 1 or 2.p1,r1-1∆n is the probability that boxes
containing (r1-1,r2) particles are transformed to boxes contain-
ing (r1,r2); the interpretation ofp2,r2-1∆n is similar. These
probabilities can be expressed in analogy to eq 7 as follows:

Using

the probabilitiespσ,rs become

The initial conditions when all boxes are empty, as a function
of particlesn in the sample, of the number of sites (m1, m2) in
a box, and of the number of unit cellsNuc can be written for
the particle occupationsr1 andr2 as follows, in analogy to eqs
11 and 12:

Generalization to three, four, or more different sites is
cumbersome but straightforward by extending eqs 38-45
appropriately. It is more useful to discuss the independent
particles in a box with two different sites in detail. We do not
write differential equations as we did for eqs 5 and 6 because
no analytical solution of the problem is known. The occupations
Nr1,r2((n,m1,m2,Nuc) are known, however, from the numerical
solution of the problem given in the Appendix B as a Mathcad
code that can be translated easily to any other desired form.22

This ends the mathematical part of the independent particles
in a box with two different sites and we now explore its
meaning. It is obvious that the systems behavior becomes more
complex with respect to the previous case. A given occupation
probability set (q1,q2) leads to (m1 + 1)(m2 + 1) different plots
of the type shown in Figure 1. We investigate this for a specific
case where we again consider microcrystals consisting of a
certain number of boxes each of which bearsnbox ) 12 places.
m1 ) 7 of theses places bear an occupation probabilityq1 )
0.25, and the otherm2 ) 5 places bear one ofq2 ) 0.75. We
do not show all 48 situations. The four cases illustrated in Figure
4 are sufficient to explain the variety of situations created by
two different sites. It is not difficult to understand the system
and to derive specific information for any possible situation,

Figure 3. Plot of the natural log ofK versus the equivalent fraction
of exchanging species calculated for the independent particles in a box,
eq 37 (solid) and Kielland plot according to eq 36 with the adjusted
parametersa ) -0.476 andb ) 0.364 (dotted).

nbox ) m1 + m2

1 ) q1 + q2

nmax ) m1Nuc + m2Nuc (38)

N0,0,i ) N0,0,i-1 - (p1,0 + p2,0)∆nN0,0,i-1 (39)

Nr1,r2,i
)

Nr1,r2,i-1 + p1,r1-1∆nNr1-1,r2,i-1 + p2,r2-1∆nNr1,r2-1,i-1 -

(p1,r1
+ p2,r2

)∆nNr1-1,r2,i-1 (40)

pσ,rs
∆n )

∆n

n ( qσ(mσ - rs)

(q1m1 + q2m2) - ∑
r1)0

m1

∑
r2)0

m2

(q1r1 + q2r2)
Nr1,r2

n
),

for σ ) 1,2 andrs ) r1,r2 (41)

A ) (q1m1 + q2m2)n (42)

pσ,rs
)

qσ(mσ - rs)

A - ∑
r1)0

m1

∑
r2)0

m2

(q1r1 + q2r2)Nr1,r2

(43)

N0,0(0,m1,m2,Nuc) ) Nuc (44)

Nr1,r2
(0,m1,m2,Nuc) ) 0 (45)
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despite its complexity. We observe as an example in theθ0,r2

plot how the unoccupied sites vanish with increasing average
exchange degreerj ) r1 + r2 and how site 2, which has higher
occupation probability than site 1, is first occupied by only one
particle. However, occupation with two particles starts very
soon, and all boxes with only site 2 occupied vanish rapidly
above an average exchange degree of about 5. These results
can be used for understanding the internal occupation equilib-
rium 46 of a system with two different sites, 1 and 2, and they
are very useful when studying, e.g., spectroscopic properties
of species that depend on site occupation probability.

Since allNr1,r2(n,m1,m2,Nuc) are known from the numerical
solution of eqs 39 and 40, all individual equilibrium constants
KF1F2 can be calculated by means of eq 48, and therefore the
change of entropy is known, similarly as in eqs 24 and 25.

A question often encountered concerns the distribution of
particles among the different sites for a specified average degree
of exchangerj ) r1 + r2. This information can be extracted
from the results illustrated in Figure 4. We show as an example
in Figure 5 the results obtained forrj ) 4 and 8 and in Table 2
those forrj ) 5. It is easy to realize that by playing with the
average exchange degree, a number of specific situations can
be generated. This can be used for analyzing experimental data
and for planing site-specific experiments.

Conclusions
We have explained the independent particles in a box case

in detail, and we have shown that the results obtained for this

simple system lead to a thermodynamic description of the
following equilibria, relevant in microporous material,

for which the equilibrium constants and the change of entropy
have been calculated. This description has successfully been
used by us to study the dependency of the electronic spectra of
activated Ag+12-xM+

x[Al 12Si12O48] on the exchange degreex.19

Our results have been compared with the so-called Kielland
plot, which has been generally accepted to be useful for
discussing activities in ion exchange equilibria in zeolites, clay
minerals, and other materials. We have shown, however, that
this choice is quite arbitrary and we propose to substitute it by
the independent particles in boxes equation as a reference for
“ideal behavior”.

The sites provided by the unit cell of a microporous material
for an ion, an atom, or a molecule are often not equivalent.
They can be distinguished by assigning different occupation
probabilities. We have therefore generalized the theory for boxes
with unequal sites, and we have illustrated how the fast
increasing complexity of the system can be handled for boxes
with two different sites, corresponding to the following internal
equilibrium in which X1 and X2 are the same species but
coordinated to the sites 1 and 2, respectively:

Our results demonstrate the usefulness of the independent
particles in boxes with several sites for studying properties of
microporous material as a function of the average exchange
degree, an experimentally easy to control parameter that
therefore plays an important role in many studies of such
material.

Figure 4. Particle distributionθr1,r2(r1 ) 0, 1, 2, and 3) for the independent particles in a box with two different sites as a function of the mean
exchange degreerj. Each box consists of a total of 12 sites, out of which seven have a probability 0.25 and five have a probability of 0.75 for being
occupied. Each plot shows the particle distribution forr2 ) 0, 1, 2, ..., 7 from left to right.

TABLE 2: Distribution of the Particles among the Sites 1 and 2 for an Average Exchange Degree ofr ) 5

F2\F1 0 1 2 3 4 5 6 7

0 9.8× 10-4 0.008 0.031 0.064 0.078 0.057 0.023 0.004
1 0.002 0.013 0.048 0.097 0.118 0.086 0.034 0.006
2 9.2× 10-4 0.008 0.029 0.059 0.072 0.052 0.021 0.004
3 2.8× 10-4 0.002 0.009 0.018 0.022 0.016 0.006 0.001
4 4.3× 10-5 3.7× 10-4 0.001 0.003 0.003 0.002 9.3× 10-4 1.6× 10-4

5 2.6× 10-6 2.2× 10-5 8.1× 10-5 1.6× 10-4 2.0× 10-4 1.4× 10-4 5.5× 10-5 9.4× 10-6

ZX1F1X2F2 a ZX1F1+1X2F2-1 (46)

KF1F2 )
[ZX1F1+1X2F2-1]

[ZX1F1X2F2]
(47)

KF1F2 )
NF1+1,p2-1

NF1,F2

(48)

ZX i + X a ZX i+1

ZX i-1 + ZX i+1 a 2ZXi

ZYnbox-iX i + X a ZYnbox-(i+1)X i+1 + Y

ZX1F1X2F2 a ZX1F1+1X2F2-1
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We conclude that the independent particles in boxes with one
ore with several sites facilitates the discussion of relevant
observations and the planning of new experiments. It should
therefore be considered as a reference system for “ideal site
occupation equilibria” in microporous systems.

Appendix

A. Solution of the Independent Particle eqs 9 and 10.To
solve this problem we write the eqs 9 and 10 as differential
equations A1 and A2 with the initial conditions A3 and A4.

The solution of A1 is readily found as follows:

Using eq 7 forr ) 0 leads to

This equation can be written as

We will see later that the integration constantC0 follows from
the initial conditions. To find the solution of A2 we proceed as
follows. First, we solve it for the special casesN1 andN2. From
this, it will be easy to guess the general solution forNr, which
can be tested by inserting it into A2. Applying the initial
conditions will then lead to the solution of the problem. Forr
) 1, we obtain

The solution of this equation can be expressed as follows:

where

and

Inserting this into eq A10 leads to

The solution forN2 is found by the same procedure as

On the basis of the solutions forN0, N1, and N2 it is not
difficult to estimate the general solution forNr ) Nr(n,nbox,Nuc)
to be as follows:

Figure 5. Distribution of the particles among the sites 1 and 2 for an
average exchange degree of 4 (upper) and 8 (lower). The values of the
maximum contour are 0.120 (upper) and 0.132 (lower) and the spacings
between the two contours are 0.013 (upper) and 0.015 (lower).

dN0

dn
) -p0N0 (A1)

dNr

dn
+ prNr ) pr-1Nr-1 for nbox g r g 1 (A2)

N0(0,nbox,Nuc) ) Nuc (A3)

Nr(0,nbox,Nuc) ) 0 (A4)

∫ dN0

N0
) -∫p0 dn (A5)

ln(N0) ) -∫ nbox

nboxNuc - n
dn ) nbox ln(nboxNuc - n) + ln C0

(A6)

N0 ) C0(nboxNuc - n)nbox (A7)

dN1

dn
+

nbox - 1

nboxNuc - n
N1 )

nbox

nboxNuc - n
N0 (A8)

dN1

dn
+

nbox - 1

nboxNuc - n
N1 )

nbox

nboxNuc - n
C0(nboxNuc - n)nbox (A9)

N1 ) G(n)eU(n) (A10)

U(n) ) -∫ nbox - 1

nboxNuc - n
dn )

(nbox - 1) ln(nboxNuc - n) + C11 (A11)

G(n) ) ∫ nbox

nboxNuc - n
C0(nboxNuc - n)nboxe-U(n) dn

G(n) )

∫nboxC0(nboxNuc - n)nbox-1e-[(nbox-1) ln(nboxNuc-n)+C11] dn

G(n) ) nboxC0 ∫ e-C11 dn ) (n + C10)nboxC0e
-C11 (A12)

N1 ) (n + C10)nboxC0e
-C11e(nbox-1) ln(nboxNuc-n)+C11

N1 ) nboxC0(n + C10)(nboxNuc - n)(nbox-1) (A13)

N2 ) nbox(nbox - 1)C0(n2

2
+ nC10 + C20)(nboxNuc - n)nbox-2

(A14)
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whereC00 is equal to 1. The validity of A15 can be tested by
inserting it into A2. It is easy to see that the initial conditions
A3 and A4 are fulfilled if

From this follows

Inserting this in eq A15 leads to the solution expressed in eq
13.

B. Numerical Solutions of The eqs 39-45. The solution
of this problem is illustrated in Scheme 1 as a Mathcad file.
Where possible, the same symbols have been used as in the
text.22

SCHEME 1: Numerical Solution of the Independent Particle in a Box with Two Different Sites

Nr(n,nbox,Nuc) )
nbox!C0

(nbox - r)!
(nboxNuc - n)nbox-r ∑

i)0

r

Ci0

nr-i

(r - i)!
(A15)

C0 )
Nuc

(nboxNuc)
nbox

C00 ) 1

Cr0 ) 0 for r > 0 (A16)

∑
i)0

r

Ci0

nr-i

(r - i)!
)

nr

r!
(A17)
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