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A method for calculating electronic dipole-induced transitions in solids based on exterid&dl kight-

binding (EHTB) wave functions is presented. The proposed computational treatment relies on the position
formulation for intensity calculations. It is compared with the well-known velocity method that involves
differentiation of the wave functions with respect to the electron positions. The described CEDIT (crystal
electronic dipole-induced transitions) computations are applied to interpret the low-energy absorption spectrum
of polyacetylene and the group VIA transition metal dichalcogenide MoSood agreement between
calculation and experimental absorption spectra is obtained. In the case of polyacetylene the first prominent
absorption band is due to* < 7 transitions about th& point of the irreducible Brillouin zone. The high
density of states (DOS) encounteredZatan be identified as responsible for the characteristic shape of this
band. For Mogwe plot the oscillator strengths of the first four prominent electronic transitions as a function

of thek vector in the irreducible Brillouin zone. The excitonic transitions A and B are due to resonance of
two almost degenerate interband absorptions confined to a relatively well-defined regicpace at about

ka = (%¥s7, %s7) andkg = (Y3, %s7), respectively. The origin itk space of the interband absorptions C and

D is also discussed.

1. Introduction (EDIiTs) based on EHMO wave functions for computing
different types of transitions found in molecules, clusters, and
complexes? It has been challenging to investigate if the same
electronic dipole formalism can be extended to the solid state
as long as initial and final states of the transitions can be
associated with EHTB wave functions. We have therefore
developed a FORTRAN program which we call CEDIT (crystal
electronic dipole-induced transitions) that allows the modeling
of electronic absorption spectra of solids based on this approach.
A number of theoretical expressions for the description of
electronic dipole transitions have been reported. Their equiva-
lence for exact wave functions can be proven by canonical
transformations of the Hamiltoni&!” or can be shown to be
a consequence of the off-diagonal hypervirial relation for an
arbitrary quantum mechanical operat®rThe two most com-
mon versions are the position and the velocity formulation
employing the quantum mechanical operatoysand Vi,
respectively. For molecules it is known that these two formula-
tions in general do not yield identical oscillator strengths if

Understanding of the interaction of light with solids is of
fundamental interest not only in order to gain insight into the
solid’s electronic structure but also to help us to design new
optical devices. The physics in this area is quite rich, as are
the experimental techniqués.Hence, it would be a very
demanding or even impossible chore to model the optical
properties of solids ranging from insulators through semicon-
ductors to metals and treating excitons, interband transitions,
and plasmons in a uniform way. Fundamental questions such
as “What is the mechanism by which matter absorbs visible or
ultraviolet light at a given wavelength? and How does it dispose
of the energy it thereby acquires?” have been answered
satisfactorily in the case of atoms and simple molecules, but in
the case of solids, experimental facts immediately overwhelm
any simple guantitative theory. However, an indispensable
prerequisite in order to describe light absorption or emission
phenomena in solids is the knowledge of its electronic structure.
Since the turn of this century when Drude put forth his noted lied . f 20
theory23 many—more or less sophisticategnethods aiming appiie _to approximate wave _””‘_’“0 ) ] )
at the description of the electronics of solids have been N this work we report applications of CEDIT calculations
developed. It has been shown that the band structure in the®n Polyacetylene and the group VIA transition metal dichalco-
band-gap region is frequently well describable within the 9enide MoS that has been reinvestigated in a recent publica-
extended Hakel tight-binding (EHTB) theory:® This usually tion'® using theposition operator for the computation of the

holds for semiconductors that have been the focus of intensetransition dipole elements. It will be shown that thelocity
research for their optical properties and their capability to formulation on general grounds cannot yield satisfactory results

transform visible light to electrical energy in solar deviée® if used in conjunction with extended kel tight-binding crystal
On the other hand, it is well documented in the literatts&rting orbitals. Besides attempting a description of the spectral features
with the pioneering work of Wolfsberg and Helmhelthat of the low-energy transitions that are well-known and have been
electronic transitions in molecules can be often well treated discussed in the literaturé,*?>we place the question of the
within the extended Fizkel (EHMO) approximatiod314 In a nature of the crystal orbitals (COs) engaged and the origin in
recent publication, we successfully applied oscillator strength SPace of these transitions into the foreground, facts that are often
calculations to describe electronic dipole-induced transitions difficult to unambiguously determine from experimental data.
This paper is organized as follows: In the next section we
* Author to whom correspondence should be addressed. describe the computational method as used in this work to model
€ Abstract published ilAdvance ACS Abstractguly 1, 1997. the low-energy electronic spectra of solids. We then proceed
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with a discussion of possible deficiencies of this method. In u andv in the unit cells located & andR’, respectively. While
this connection some general remarks on the oscillator strengthu andv are limited by the size of the unit cell, there is per

calculations in extended systems are made, therewith delimi-

serestriction for the number of unit cells denoted RyandR'.

nating the CEDIT procedure from different approaches reported Before addressing this point, we make a few general remarks

in the literature. The last section is dedicated to applications
of CEDIT to polyacetylene and to M@S

2. Method
The Position Formulation. The electronic transition dipole

momentdﬁ?n between two wave functiong, andyn, is defined
ag3-25
dgdm = |jyjn|ded|’l/}m|] (1)
ded: _(Z eri) (2)
I

The oscillator strengtlym of the transitionn < m amounts to
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wheree is the elementary chargh,is Planck’s constant is
the electron massg; is the speed of light in vacuum, are the
electron position vectord, is the wavenumber in cm of the
transitionn <— m, andly equals 1.085< 1075 cm/A2. fumis
dimensionless. TypicdmVvalues for electronic dipole-allowed
transitions are in the range 19to 1.

The EHTB band orbitalgik(r) are given as follows:

v = ¢,k { 2 € (r — R)}
u

wherek is the wave vector angl,(r — R) are the atomic orbitals
located at the Bravais lattice sites defined by a set of position
vectors

|~ 2
fnm_ I0V|Dnm|

(6)

R =na, + nya, + nya, ©)

in which then; run over all integers and tha are linearly
independent basic translations. Theare the orbital coef-
ficients to be determined by the variation principle. We denote
the initial and final crystal orbital (CO) withyix and v,
respectively. As we will only consider direct transitions, we
may writek = k'. fsk is then proportional to the energy gap
between the two COs at the poikt #(k), and to|Ds k|2, but
the factorlp has to be doubled i is occupied by two electrons.
Combining egs 1 and 4 with 6, we find for the transition dipole
length

Dsix = Wylrly; U
=5 @I S (@0 x
M WV
Oy (r = R)Irly,(r — R)T(8)

Hence Dy x can be written as a matrix containing integrals over
atomic orbitals. The summation runs over all atomic orbitals

on tight-binding calculations that will help us to solve this
problem.

In order to keep the burden of notation minimal, we restrict
the following discussion to the simplest possible “solid”, namely,
a one-dimensional chain of equally spaced hydrogen atoms.
Once we have understood the hydrogen chain, the extension to
systems of more complicated unit cells and higher dimension
should be straightforward.

Any of theN members (points) of the lattice can by definition
be described by a vectd®® with R = nja;. If we place a
hydrogen atom in every lattice point and assume fhgt>
ap, Whereay is the Bohr radiusdy = 0.529 x 10-8 cm), then
according to basic quantum mechanical considerations, this
system can be described by linear combinations of the
respective lsorbitals. In order to satisfy the Bloch condition

p(r +R)=€“Fy() 9)
appropriate linear combinations are
Yik = Z e“F1s,(r - R) (10)

where 0< k < 1/2 ranges through thH values in the first
Brillouin zone consistent with the Borrvon Kaman periodic
boundary condition an& ranges over all unit cells. Equation

10 corresponds to the part in curly braces in eq 6 that is, the
c,’s equal 14/N and there is nd dependence of the COs. Any

H orbital does not “feel” its neighbor and hence does not know
of its phase. Therefore all Bloch functions belong to the same
energy eigenvalue, namely,13.6 eV per unit cell (cf. Figure
la, left). As the Bravais lattice is infinite, there is no way of
distinguishing between different sites, and we may choose any
point to set up the origin of the coordinate systam~0). If

we now decrease the lattice constant, the pure hydrogen orbital
154(0) begins to experience its neighbors, thg(0¥ and with

it all others, will be more or less perturbed, and the phase of
neighboring atoms becomes crucial. Td)&s alter their value

as a function ok. At the pointk = 0 (I point) all orbitals are
in-phase and hence only have bonding interaction, and their
energy drops to about20 eV. The opposite holds for a
hydrogen in a Bloch function at th¥ point. Any hydrogen
orbital has antibonding interaction with either of its immediate
neighbors. Their energy rises 480 eV (cf. Figure 1a, right).

It is important to stress that 4&) will only be affected by a
few nearest neighbors; thus the determination ofo‘J‘ne can

be restricted to only a few neighbor cell¥girg). We will see

that the same should hold for the transition dipole lerigikh.

Let us now address the calculation of the transition dipole
length. For simplicity we inspect transitions at the center of
the Brillouin zone (i.ek = 0). Applying the above definitions,
Dsio can be written as

N N

1
> x
MENMEN 2N+ 1 = M — M,
D o = Ma)Ix|y €, (x — Mpa)0(11)

u

Diio=

where the sums run over only a few neighbor céllselative

to the reference cell at = 0, where the photon is supposed to
hit. We have made the assumption that all electrons if\the
next neighbor cells experience the same electric force that is
oridinarily satisfied as the wavelengthof visible light is on

the order of between 3@nd 1@ A, whereas the lattice constant
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Figure 1. (a) Band structure of a chian of hydrogen atoms spaced dd dhapart, respectively. The energy of an isolated H atom18.6 eV.

(b) Band structure of a Peierls distorted H chain. A distortion of 0.01
as a dashed line.

a; is usually on the order of angstrgams. The normalization
factor 1/(N + 1 — [M; — My|) is introduced for the following
reason: in a tight-binding calculation the determination of the
coefficientsc (k) must not depend on the number of neighbor
cells considered around the cell lyingRit= 0. This condition
can be easily fulfiled, as the overlap responsible for the
distortion of the atomic orbital(s) decreases rapidly with
increasing distance of the interacting cells. This, however, doe
not hold for eq 11 without the mentioned normalization. kAt

= 0 all coefficients of atomic orbitals related to each other by
translation through a multiple of the lattice constaptre the
same. Thus, increasing the number of neighbérsvould

A is assumed. The computed oscillator akmgthheX line is drawn

number of basis functions and thus twice the number of bands.
However, the energy range covered by the single band in Figure
la and in the case described above remains the same. This
fact is called back-folding. In a Peierls distorted chain we
obviously have the possibility of computing direct electronic
transitions. The same holds for the “back-folded” hydrogen
chain, even though this is in clear contradiction to what we have
Sstated above. As physical properties should not depend on
assumptions above the size of the unit cell, we conclude that
we have to restrict our calculations to the primitive unit cell.
This notion is further supported by the following observation.
In a “back-folded” hydrogen chain the two crystal orbitals are

increase the number of equal transition dipole length elementsgegenerate aX. Hence, Dsx must be equal to zero for
and hence the oscillator strength. The correction is to divide symmetry reasons. HoweveD;x = 1.18 A is computed if

every matrix element by the number of identical ones. Con-

vergence is reached as soon as the elemﬁtjpgl(x +
Na,)|x|c,y,(x — Naj)Oapproach zero. This condition can

we take two basis functions to treat an equally spaced chain of
H atoms. The energy rang¢he allowed energies as we move
throughk space-is independent of the relative phase of the

usually be satisfied by setting the number of neighbor cells for crystal orbitals; the transition dipole length is not. To obtain

a CEDIT calculation Ncepit) to approximately half of the
neighbor cells used in the respective band calculatigepit
~ NenTe/2.

the correct answe; x = 0 A) in a “back-folded” chain of
equally spaced hydrogens, we would have to shift any of the
respective crystal orbitals by half of the unit cell length. This,

We consider again the H chain sketched in Figure 1a. From nowever, requires knowledge of the translational symmetry of

the point of view of an oscillator strength calculation both
situations are equally uninteresting. For any gikegooint only

the crystal orbital, a property that is supposed to be fully taken
care of by the Bloch functions alone. Hence, the simplest solid

one Bloch function exists exhibiting the needed translational allowing a physically meaningful oscillator strength calculation

symmetry. Direct dipole-allowed transitions with; = ks do
not exist.

Chemists would expect such a hydrogen chain to break apart,

forming H, molecules. Such breaking apart would be due to
vibronic coupling and is nothing else but the well-known Peierls

distortion. This leads to the situation sketched in Figure 1b.

The unit cell now contains two hydrogen atoms. For &ny
vector we can construct two Bloch functions, resulting in two
bands. The lower band runs up as we move filono X; the
upper band runs down. They almost meetXat The only

difference between the two crystal orbitals at this point is that

is a Peierls distorted H chain.

In Figure 1b we give the calculated oscillator strength as a
function of thek vector (dotted line). The highest absorption
intensity is found af’; the lowest a, where it is almost zero.
This finding is not too surprising for the following reasons.
Firstly, the energy difference decreases quite dramatically as
we move fromI' to X; secondly, the transition dipole length
decreases as initial and final crystal orbitals begin to resemble
each other more and more on going franto X (cf. eq 11).

At points of high symmetry in the first Brillouin zone (e.qg.

the more stable CO exhibits bonding interaction within (shorter I' point) degenerate crystal orbitals are frequently observed.

distance) and the slightly destabilized one across the unit ce
(longer distance). They would be exactly the same if we

[I Thus, a few words about oscillator strengths between degenerate
COs will be added. Any electron occupying the degenerate

removed the Peierls distortion, taking us back to the situation initial crystal orbital may be promoted to any crystal orbital of
sketched in Figure 1a, with the important difference that we the degenerate final set. Hence, the formula forffhetakes

have doubled the size of the unit cell.

This means twice the the form
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G
(12)

whereG; and G, indicate the degeneracy of the initial and the
final COs, respectively. The averaged occupation number of
the initial CO is denoted b¥; the 2 in the denominator takes
into consideration that the factolyds calculated for occupied
orbitals. b can be easily determined in diamagnetic solids by

J. Phys. Chem. B, Vol. 101, No. 29, 19%667

the velocity (eq 16) formulation yield identical results only under
the condition that exact wave functions and transition energies
are used in the computations. Most approximate calculations
exhibit discrepancies among the results obtained from these
expression3?2% The same holds for band calculations where
the situation is further complicated by the introduction of the
translational symmetry and therewith fundamentally changing
the behavior of quantum mechanical operators.

We consider one-electron interband transitions between fully
occupied and empty bands. It can be shown that orbitals not
changing their occupation under irradiation do not contribute

filling up all valence bands. The same procedure turns out to 1, tha oscillator strength Hence, we may drop the sums in

be much more cumbersome in paramagnets involving numencaleqs 15 and 16 and writeandV,

integration up to the Fermi energy.

Up to now we have only considered electronic dipole-induced
transitions at distindt points. However, transitions contributing
to the electronic absorption spectrum of a solid may occur at
any k point within the irreducible Brillouin zone (IBZ), and
we will see that it is of great importance to take all these points
into account. It is not sufficient to restrict the calculation to
points or lines of high symmetry of the IBZ. High densities of
state (DOS) given by

de(k))—l a3

E =

9(e) ( dn
wheren is the number of one-electron levels in the energy range
€ + de, often encountered at these “special” points in general
do not guarantee high electronic absorption; low oscillator
strengths may destroy this notion. For the two-dimensional IBZ

we apply a numerical integration procedure as described by

Ranirez and Bbm26 The integral of a periodic functiorp(k)
(e.g. oscillator strengtfi(k)) can be approximated by a discrete
summation

1
> opk)  (14)

1
| =— p(k) dk ~
VIBZ ‘[I‘BZ N
wherew; is the weight of thdéth data point as determined by
simple geometrical reasoning, aNchormalizes the weighting
factors to unity: N = Yiw.

Other Formalisms for Intensity Calculations. In the

previous section we have introduced the theory as implemented

in the CEDIT program and used to model the low-energy
absorption spectra of polyacetylene and M&de infra). We
proceed by discussing the oscillator strength calculations in

extended systems in a more general way in order to deliminate

our procedure from different approaches reported in the
literature.

Theoretical expressions for electronic intensities are available
in a number of equivalent forni§:17.2” The two most common
versions are the following electronic dipole relations

EWMZE Vﬂme[b=EbJ[:£ nJ4]|meh=aMmﬁwM:£rﬁwm[
I I ]
(15)
Bl Y (V)= By v H =
| I
Oonf el YV, [ (16)
|

where we have used atomic units; thatiss me = e = 4meg

= 1, me and e being the mass and the charge of an electron,

respectively. Here; andV;, are the position and the gradient
vectors for theath electron, and/ is the local potential energy.

for the position and velocity
operators, respectively. We first check whether these operators
if applied to Bloch sums(cf. eq 6) are hermitian. The
hermiticity (i.e. [m/O|mO= nO|n®) of the position operator

r can be demonstrated as follo#fs:

Bt 105 [ WA 1 p(r) dr =
ji, Y1) 1 e (r) dr

= {7 ) 1 () dr* = G r iy
(17)

with (y*)* = y andr is real. It is already implicit in eq 15
and only a bit obscured by the notation that the veloeitipole
relation

_ Imewnm,k
e

ed
nmk

d (18)

pnmk =

makes use of the momentum opergbor= (h/i)V, rather than
V.28 Applying integration by parts, we thus write

o h
adPlm= 7, WD) T Vitm(r) dr

B i) dy )

r=-+oo
r=—o

B V) = [ o) GO

r=-+o

r=—oo

me Pru(r) ? Vi P (r) dr

= P(r) Y ()|

In order to obtain hermiticity the first term is required to vanish,
which is generally the case for “molecular” wave functions that
approach zero at+ . Blochsumshowever, by construction
neither vanish at £+ « nor are they periodic in the direct
Bravais lattice (i.eyr(r) = yu(r + R)). The functional values
of Bloch sumsat infinity, i.e. k() or y(—), are defined
mathematically. This does not hold, however, for the limits
+o0 themselves, as infinity in a Bravais lattice is “everywhere”.
r + o are neither distinguished nor well-defined places in the
lattice. It should be noted that there is nothing in the Bern
von Karman periodic boundry condition that defines the value
of the Blochsumsatr =+ o; in particular they are not forced to
be equal. The periodic boundry condition merely allows us to
equate the number of Bloch wave vectérs a primitive cell

of the reciprocal lattice. Thus, the infinity of the Bravais lattice
is taken into account by a vectérthat becomes continuous

For molecules it has been shown that the position (eq 15) andthroughout the first Brillouin zone aR — .
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TABLE 1: Real and Imaginary Part of the Dipole Length Times € (i.e. oﬁﬂ) Calculated in Absorption ¥, <— w1 and
Emission 1 — 12, Numerically Showing the Hermiticity of the Operator x (or r) As Applied to Bloch Sums

k point Ref17] Im[d17] Re[d] Im[daq]
0.0 —1.562 306 87 0.0 —1.562 306 87 0.0
0.1 —1.491 663 06 0.001 3351612 —1.491 663 06 —0.0013351612
0.2 —1.320137 70 0.002 0410213 —1.320136 70 —0.002 0410213
0.3 —1.131 27776 0.002 586 304 6 —1.131 27776 —0.002 586 304 6
0.4 —0.994 007 05 0.002 659 343 6 —0.994 007 05 —0.002 659 343 6
0.5 —0.944 940 15 43298 1071 —0.944 940 15 —4.3298x 10711

For completeness, we finish the proof under the condition Hence, the oscillator strength that is proportional to the square
that the first term vanishes. of

Pl = =2 [ o) dp() (W) o) Vepa o) (22)

. K is zero according to

(/v oty =
B lplv, 3 (19) (h/i)f¢2,o(r) Vi r) dr = ih@fwz,o(r) Pior) dr =

ihtd,,=0 (23)

Hence, the momentum operagis not hermitian if applied to

Blochsums As the oscillator strengthmis an observable and It is easy to show that the same holds for &ng IBZ. This
proportional to|d®% |2 = d*¢d (cf. eq 3), the matrix elements IS @n unexpected result and in contrast to the finding of the
n n . ’

d* are required 10 be hermitian. In Table 1 we bis(k) and position representation (cf. Figure 1b). Itis difficult to see why
d21(k) taken from our oscillator strength calculation on the e!ectromc |nterk_)and transitions should be forbidden in a Peierls
Peierls distorted H chain shown in Figure 1b, therewith dlstorted_ H chain, wherea_s it is I_mown that such transitions are
numerically showing the hermiticity of the operator responglble for t_he relatively Intense I_ow-energv .

Tis docs ok mean tht— (N s 1ot an edmissle S e secenin s e e o
operator. It only demonstr_ates that it is not hermitia_n, if we unit cell. In the previous section, we have given some rather
apply it to Blochsums It is, however, always possible 10 jnyitive arguments of why we should restrict the calculation
construct ngl-locahzed wave packef[s ,OUt of Bloshmls to the smallest (i.e. primitive) unit cell. In this place, we further
thereby fulfilling the condition of vanishing wave functions justify this statement and address the case where an appropriate
definition of the unit cell is not straightforward. The starting

whenr is infinite. Another possibility that will be considered
toward the end of this section is the transformation of Bloch point is once again the Peierls distorted H chain sketched in
Figure 1b. As described above, computation of the crystal

sumsto Bloch functions Bloch functionsare periodic in the
direct Bravais lattice, which turng into a hermitian operator.  pitals emerging from a chain of equally spaced hydrogen

If p is applied to Bloctsums some care is, however, advisable,  51oms has to be carried out by considering exactly one hydrogen
as can easily be demonstrated for the Peierls distorted H chain 4iom per unit cell such that the translational symmetry is fully

The crystal orbitals at th€ point are given by taken into account by the phase factétfe We have already
mentioned that the energy gap appearing aktpeint in Figure
P or) =N Z {1s,(r —R) + 1s,(r — R)} 1b would close upon destruction of the Peierls distortion,
! ’ therewith enforcing the hydrogens to be equally spaced. It is

1 furthermore not difficult to see that the energy range covered
Podr) =N, Z {1s,(r —R) —15,(r —R)} (20) by the unfolded chain (right-hand side of Figure 1a) and the
back-folded band are equal and limited by the all-bonding and
] all-antibonding crystal orbitals. This is, however, the only
whereys o(r) andy,or) are the valence and conduction band, property these two “pictures” have in common! Computing the
respectively. Operating with = (f/i) Vi ony10and expanding  pands with two H atoms per unit cell and starting with the most
the Blochsumsin sums of Slater-type orbitals (STOs) of the ponding crystal orbital af’, the band runs fron" to X and
form 1sy, = 1sy, = Nee™ & yields then back td” until the maximum energy is reached. This does
not hold for the “not-back-folded” situation, where the whole
RV, 1) = (h/i)erIl’2 Z {1s,(r —R) + energy range is already scanned upon going fidno X.
' ! Hence, it is clear that the slope of the band (ide(k)/9k) is
1s42(r - R)} different in both cases. As various physical properties are
connected with the slope of the bands, this has far-reaching
_ (h/i)NIUZ {V,1s,(r — R) + consequences such as different Fermi levels, crystal energies,
Z T electron velocities, and oscillator strength§hus a smallest
V,15,(r — R)} or primitize unit cell, as it is often called, always has to be
e considered. The conception of back-folding is, however, a very
N e —1/2 useful didactical tool and helpful to treat small distortions of
= —(W/)EN; Z {1341“ -R)+ the crystal that enlarge the unit céllThere is no unique way
of choosing a primitive cell for a given Bravais lattice. We
15,,(r = R)} restrict the discussion to the WigneBeitz cell without losing
. generality. Since there is nothing in the definition of the
= —(R/)Cyy (21) Wigner—Seitz cell that refers to any particular choice of
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TABLE 2: Coulomb Integrals Hj and Slater Exponentsg;

element orbital i (c) HileV
2 A 1s 1.3 -13.6
g B 1s 1.0 -10.0
o H 1s 1.3 —-13.6
g C 2s 1.71 —-21.4
B 2p 1.625 -11.4
8 Mo 5s 1.96 —8.94
8 5p 1.90 —5.60
g 4d, 3.814 (0.512 —10.43
-g 4d, 1.864 (0.641H
Z S 3s 2.283 —19.85
< 3p 1.817 —10.93

a Reference 63¢ Reference 64< Reference 65.

12.4 2438 372 of the spectrum no longer allows any ambiguities and is

E/eV independent of the particular choice of the coordinate system

Figure 2. Computed spectra of a linear-8 chain. The distances  Within the unit cell. The computations are moreover invariant
between A-B and B--A are chosen to be 1.0 and 1.5 A, respectively. regarding the number of unit cells that are taken into account

The dashed and solid line show the spectra for-88fand B--A unit (cf. eq 11).
cell, respectively, normalized to the main absorption band. The unit cell dependence of the integrals
primitive vectors, the WignetSeitz cell will be as symmetrical L i = f(p:k,(r) I @ (1) dr (24)

as the Bravais lattice.
A physical crystal can be described by giving its underlying where thepn are Blochfunctionsof the form
Bravais lattice, together with a description of the arrangement

of atoms, molecules, ions, etc., within a particular primitive cell Pnr) = eik'runk(r) (25)
(i.e. by defining a basis with respect to the Bravais lattice points).
The choice of such a basis within a Wigreeitz primitive is known in the literature. The following suggestion to rewrite

cell is not necessarily unique, even though often given by the Ink'mk Was put forwarc®-30

chemists intuition of bonding in extended structures, probably

placing the most tightly bound species into a unit cell. We f PESN Py dr = _iif(p:k’(pnk dr +

consider a one-dimensional chairA—B---A—B---A—B--- that ok .
consists of two different atoms A and B. Obviously, there are " e[i(k—k’)-r]%
two ways in which the basis regarding the one-dimensional f Unic

Bravais lattice can be defined, namely, (ayB and (b) B--A.

Here, both possibilities fulfill the requirement of being a smallest = —j ifq)’r:k’q)mk dr +i Q. ok — k')
unit cell. As far as the energy calculation is concerned, the ok (26)
situations a and b will yield equal values, as we would expect

itto. Inthe case of the crystal orbitals, things are already a bit The physical notion in eq 26 is the observation thad/ok is

more subtle, as they are no longer the same but shifted by somesnother position operator as can be seen if applied to plane
arbitrary phase factor. However, the hermitian operatés waves.

defined with respect to the chosen unit cell. It is not too

surprising that the oscillator strength calculation based on Bloch M= o(k — kr)j‘efik'-r (r)(—in)eik'r(r) dr 27)
sumsis to some extent dependent on this choice. To a certain

degree this problem can be circumvented by transforming the As Blochfunctionsare in general eigenfunctions neither of the
Bloch sumsyr(r) to Blochfunctionsgn(r). We will address  momentum operator nor of the position operator, we get an
this point toward the end of this section. For the moment, we additional termQ.m that is not sensitive to the choice of the
argue that photons do not discriminate between different unit unit cell, whereas the first term is still subject to such a
cell choices and suggest taking the average value of thedependence. Hence, itis clear on general grounds that the above
computations a and b. The disadvantage of this unit cell transformation is only somewhat more acceptable than eq 24
dependence is less severe than might be guessed at first glancgnd does not remove the overall unit cell sensitivity. By
due to the fact that the oscillator strength is proportional to the coincidence, the quantitie®,, are used in the perturbative
square of the transition dipole length. Even, if the transition approach by Genkin and Mednis to describe the frequency-
dipole lengths for different unit cell choices should have opposite dependent linear electric susceptibifify. Some authors use
signs, only minor changes regarding the computed spectrum|Q,, (k)| as a measure of the oscillator strength simply neglecting
are observed. In Figure 2 we show the worked out spectra of the first term in eq 262 The motive for this proceeding is,

a linear A-B chain. The distances betweer-B and B--A however, obscure as long as the first term does not vanish.
are chosen to be 1 and 1.5 A, respectively, resulting in a unit  For Bloch sumsthe periodic functionsi(r) = uw(r + R)

cell size of 2.5 A. The Slater orbitals and Coulomb integrals gare given by the transformation

are given in Table 2. The dashed and solid lines show the

spectra for an A-B and B--A unit cell, respectively, normalized Uy (1) =€ "y, (r) (28)

to the main absorption band. This clearly demonstrates that

no new features arise upon a different unit cell choice, despite wherey(r) is defined according to eq 6. For fixeg un(r)

the large overlaps and energies involved in this example. Foris then defined as a sum over all Bravais lattice poRis.e.
bigger unit cells and more realistic transition energies these ‘

discrepancies are further diminished. We add that once a basis Uy (r) = Z gl Z (k) %, (r = R) (29)

with respect to the Bravais lattice is chosen, the computation 7
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whereun(r) is indeed periodic in the Bravais lattice, according
to

Ul +R) = 5 TS ) 7~ R) (30)
u

The equivalence diiw(r) andun(r + R’) follows immediately

as the sum in eqgs 29 and 30 runs over all Bravais lattice sites.
Making use of the transformation from Blodumsto Bloch
functionswould then allow us to writ&

(¢nk(r)|vr|(pmk(r)D: fce,,u’;k(r)e_ik'r Vr umk(r)eik-r dr

= [centii(r) Vi Un(r) dr +
ik fcellu:k(r) umk(r) dr

=M, + ikM,, (32)

for the transition matrix elements in the velocity representation.
For electronic dipole-allowed transitions the second term in eq
31 is small compared tM,m and can be neglected. It would
be exactly zero for direct transitions where theector doesn’t
change upon absorption of a photon (orthogonality of Bloch
functions with samék and different band indices)Mpm is an
integral over a primitive unit cell in direct space. Moreover,
the operator#/i)V; is hermitian for all continuous functions
unk(r) with continuous derivative¥.

S catfil) 9,00 6 = [ [ ¥ U0 ) @

Equation 32 reduces to

B o ()Y, 40) + (T, (1)) =
B o ViU (0) U 1)) O (33)

This expression is identical with the surface integral

R rAUET) U (1)) do

, (34)

wherenf is a unit vector in the direction of the outward normal.

It has opposite sign at two opposite points, and therefore the
integral vanishes, which proves eq 32. The same result is
obtained if we follow the arguments used to derive eq 19. As
the functionaun(r) are periodic in the Bravais lattice, the value
of the integral f quf (r)(B/i) V,u,(r) dr remains unchanged
upon shifting the integration interval b&r. It is, however,
always possible to choogr such that eithetn(r) or upk(r)

is zero on the surface of the unit cell, thus causing the product
Unk(r) Umk(r) to vanish.

Equations 2831 demonstrate a way to work out the oscillator
strengths starting with Blochumsin a less unit-cell sensitive
fashion. This can only be achieved under the condition of
transforming the Blochsumsto Bloch functionsand subse-
quently applying the velocity formulation for the transition
matrix elements. It should be noted, however, that the
transformation given by eq 29 is still subject to an indetermi-
nacy. We have already mentioned that the phases of the
coefficientsc](k) are sensitive to the unit-cell choice. Thus,
the uw(r) as calculated from the respective Bloshmswill
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the Bravais lattice by a factork& at every point. Again we
take the linear H chain as an example and consider the all-
bonding linear combination as observed at Fhpoint, which

is obviously periodic in the Bravais lattice. If we multiply this
crystal orbital with &T at every pointr according to the
construction recipe for Blocfunctions the hydrogen orbitals
that spread over a certain distance, Aayalong the chain, may
lose their spherical symmetry, as the valu&s are not constant
over the range of\r. For Blochsumssuch a situation where
the atomic orbitals are “unbalanced” may never be encoun-
tered3®

It would be desirable to further investigate and compare the
different formalisms for computing electronic dipole transitions
in extended structures. Here we want to explore the applicability
of the position formulation to Blockumsputting up with the
deficiency of the unit-cell sensitivity that should, however, not
be too severe a problem as discussed above.

Computational Section. The calculation of the matrix
elements (cf. eq 8) is cumbersome. The procedure used is the
same as described in refs 15 and 24, where the calculation of
the transition dipole length reduces to computations of overlap
integrals with modified Slater exponenisto which the right
transformation properties are applied. We use the overlap
subroutine as originally implemented in ICOM8o calculate
the overlap integrals. For further reference see the description
of the ICON-EDIT package that performs extendedtkil and
oscillator strength calculations on molecutésOur computer
program, which we name CEDIT, has been restricted to
FORTRAN 77 standards, which makes it easily transferable to
most platforms. The crystal orbitals used by CEDIT are
computed with a modified-*8version of the EHMACC program
package?

The EHTB crystal orbital calculations on polyacetylene and
MoS, are described in refs 10 and 38, respectively. We give
the respective valence electron ionization energies (VOIEs) and
Slater orbitals in Table 2.

3. Applications

We now apply the computational method outlined above to
investigate the low-energy absorption spectra of the one-
dimensional polyacetylene and the two-dimensional molybde-
num(1V) sulfide. Both materials show a highly anisotropic
optical behavior and have recently attracted notable interest. It
has been shown that many of their properties can be well
described by the EHTB methdf3840

Polyacetylene. As the simplest member of the class of
conducting polymers, (alkansg)-polyacetylene (PA) has at-
tracted multidisciplinary interest and extensive research activity
since the early 19704,when a new and more easily accessible
synthesis for PA was fourfd:*® Moreover, PA is of significant
historical importance for quantum chemistry since the early
LCAO-MO studies of linear polyenes by Lennard-Jd¥iesd
Coulson®> Doped PA exhibits the largest electrical conductivity
observed in any conducting polymer, with values reported in
excess of 19S/cm?#6 and exhibits interesting optical proper-
ties?!

It is now widely accepted that PA forms a Peierls distorted
ground state. Theoretical reasoning by Longuet-Higgins and
Salem?” X-ray scattering dat&4° nutation NMR spectros-
copy>®and ab initio calculatiort$52do support bond alternation.
Recently, it has been shown that EHTB calculations in its ASED
(atom superposition and electron delocalization) form yield

reflect this phase dependence. In addition, we mention that evenalternating G-C bond lengths at the optimized geomeify.he

though Blochsumsand Blochfunctionsare closely related (cf.
egs 29-30), they are not equal on general considerations. Bloch
functionsare constructed by multiplying a periodic function in

band structure is shown in Figure 3. The coordinate system is
set up such that the chain runs parallel to thaxis. Thex
crystal orbitals (COs) are thus formed by theopbitals located
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Figure 3. Band structure of (altrang-polyacetylene with bond
alternation (right: &C 1.36 A) as compared to the one for equal©
bond lengths (left: €C 1.43 A).
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Figure 4. Calculated absorption spectrum of the fitgt — =&
absorption band of{l-trans)-polyacetylene with bond alternation. Only
transitions with the light vector parallel to the chain axis are considered.
In the inset the transmission spectrum of a spin cast filntrafs
polyacetylene with poly(vinylbutyral) (PA-PVB) taken from ref 21 is
given for comparison.

1.0

on each carbon. On the left-hand side of Figure 3 we show the
band structure in the energetically unfavorable situation with
equally spaced carbons where no band gap between #mel

* bands is found. Upon relaxation of the strained geometry a
band gap of 1.6 eV opens up Atin analogy to the Peierls
distorted H chain. For a comprehensive discussion of the
subject, we refer to the literatuf@. As the smallest energy
difference of the valence and conducting bands iZ,aive
expect the low-energy optical spectrum to be dominated*by

< g transitions starting at this symmetry point. In Figure 4
we show the calculated spectrum with teector lying parallel

to the chain (i.eEllz). It was obtained by working out the
oscillator strengths at 50 equally spaéepoints along the one-
dimensional irreducible Brillouin zone and fitting Gaussian lobes
with half-widths of 1000 cm? (~0.12 eV) at the obtained line
spectrum. We have cut the low-energy tail of the spectrum at
the gap threshold, as we do not have computational information
in this energy region.

Recently, a new synthesis approach to PA has been intro-

duced®® This synthetic route utilizes transition metal ions
complexed with poly(vinylbutyral) (PVB) as the polymerization
catalyst and yields highly stable blends of PA with PVB. The
absorption spectrum of this material is shown in the inset of
Figure 4 for comparisoft The agreement between calculation
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Figure 5. (a) MoS layer structure with trigonal coordination of Mo.
(b) Hexagonal Brillouin zone.

widths of the Gaussian lobes. It is, however, difficult to judge
whether or not such a procedure is reasonable, as there are
uncertainties in the measurement, too, like the effective conjuga-
tion lengths. Moreover, it should be noted that we have
considered a single PA chain, thus neglecting the interaction
between neighboring PA molecules. If we follow the develop-
ment of the oscillator strengths of the& — s transition from

the lowest to the highest energy (i.e. fradrto T') with values

of 1.6 and 11.5 eV, respectively, we find the largest oscillator
strength af”. This reflects the topological relationship of the
PA 7m system with the Peierls distorted H chain and the
linear---A—B---A—B---A—B--- system discussed above. The
worked out spectrum given in Figure 4 is closely connected
with the band encountered below 12 eV in Figure 2, where the
absorption spectrum of the fictive-AB chain is depicted. On
going from lower to higher absorption energy, i.e. from the edge
to the center of the one-dimensional Brillouin zone, the oscillator
strengths computed at distiricpoints slowly increase (cf. also
the dashed line in Figure 1b). Yet, we do not observe an
absorption band that continuously increases in intensity with
increasing absorption energy. The reason for this behavior can
be clearly identified as due to the high density of states (DOS)
found at the center and the edge of the Brillouin zone. Thus,
the first prominent electronic absorption band in PA is indeed
as* — s transition, and the characteristic shape is not governed
by the transition matrix elements but by the high DOS
encountered at thg point (cf. eq 13).

MoS,. The structure oﬁ[MoSZ] as already determined by
Dickinson and Pauling in 1923 is shown in Figure®%aThe
distance between the two sulfur atoms within and across the
chalcogenide plane is about 3.16 A. Weak van-der-Waals-type
stacking of such planes leads to two molybdenum sulfide
polytypes, namely, 2H- and 3R-MaSWhile the 2H modifica-
tion gives rise to hexagonal crystals with an A, B, A, ... stacking
sequence (space gromﬁh), 3R-Mo$S belongs to a rhombo-
hedral Bravais lattice with an A, B, C, A, ... succession of the
chalcogenide planes (space grdDﬁg,). As interlayer interac-
tion is weak, we may neglect it for the moment and focus on
the description of the band structure and the absorption spectrum
within a single Mo$ layer that extends infinitely in two
dimensiong;[MoS,)).

The band calculations were performed within the extended
Huckel tight-binding methot->> modified as described in refs
10 and 38. The band structure along the hexagonal Brillouin
zone (cf. Figure 5b) symmetry lines offoa\/losz] layer along
with the total DOS and the S(3s), S(3p), and Mo(4d) contribu-
tions are shown in Figure 8. The top of the valence band is

and measurement is good, even though the experimentalsituated af”. From the DOS plot it is evident that the lowest
absorption peak is shifted to somewhat higher energy and isband is mainly composed of S(3s) derived states. At the top
broader. This problem could be addressed by adapting the half-of the valence band is the so-calledlzthnd. It overlaps slightly
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Figure 6. Band structure of the hexagonal Brillouin zone symmetry lines and density of statégl\obsz] layer. The S(3s), S(3p), and Mo(4d)
contributions to the DOS are projected out.

TABLE 3: Energies (in eV) of Prominent Features of the
Spectra of the Two Polytypes of Mog Compared with the
EHTB —CEDIT Calculation; In the Last Column We Give
the Averaged Difference of Experimental and Computed
Absorption Bands

2H-MoS 3R-MoS EHTB—CEDIT AE

0.94
1.910 1.908 1.44 0.47
2.112 2.057 1.68 0.40
2.760 2.758 2.17 0.59
3.175 3.126 2.58 0.57

B
A \ A exciton in 2H-M0$S. The bands C and D, respectively, are
\ due to orbitally allowed interband absorptions.
ZJ @ The calculated spectrunk (O z) is given in Figure 7 along
- 2o T with the projected ouy-polarized transitions (dashed line). To
13 17 21 25 29 33 our knowledge no absorption spectrum with Eheector parallel
EleV to z (crystallographic axis) has been reported. We will return
Figure 7. Calculated transmission spectrum with CEDIT in the energy to this point later. The spectrum was obtained by fitting
range ffo.g‘ 1-g f°C3-3t‘?g’ : t.O”'Vf ”a”SiI“O.“S ;Vﬂgpafal!e' to the Sh'ab Gaussian lobes with a half-width of 0.055 eV (450 djnto
are consiaereaq. ontrioutions 1r olarized absorptions are snown H : :
as a dashed line. For an easiero{:?mparison the eelergy axis is :shifteothe cp_mputed line spectrum that resulted from considering _all
by 0.59 eV to get exact agreement of the peaks C. In the inset the ransitions from the seven valence bands to the four conduction
transmission spectrum of 3R-MgSken from ref 7 is given. bands (cf. Figure 6) at 190points in the IBZ of the hexagonal
Bravais lattice. We have already mentioned that most band
structure calculations, regardless of the method applied, under-
estimate the band gaps often by roughly half an electronvolt.
For an easier comparison with experimental results we have
! eve Ve thus shifted the energy axis by 0.59 eV to get exact agreement
direct gap is situated & and the smallest indirect gap goes i the peaks C. Experimental and computed energies in

from I' to K, with values of 0.68 and 0.47 eV, respectively. gjectronvolts of the prominent spectral features are compared
These results are in good agreement with the experimental datg, Taple 3.

and also with more sophisticated calculatiéf$® The calcu- By coincidence the coordinate system is set up such (cf.
lated band gaps are too small,_however, which does not affect,:igure 5a) that transition along even though not forbidden
our conclusions; for more details see ref 10. by symmetry, only carry low intensity; see dotted line in Figure
The transmission spectrum of Mp®ith the light'sE vector 7. Symmetry arguments would equally predict transitions in
parallel to the slab was previously presented in 1969 by Wilson andy, as both axes (operators) remain the same upon reflection
and Yoffe?2who introduced the labels A, B, C, D, ... to denote  at a mirror plane running through the molybdenum centers. This
the absorption peaks in the direction of increasing photon requires the initial and final crystal orbitals to transform alike
energy. Later Beal et al. published better resolved transmissionupon this symmetry operation. The two calculated peaks at 2.76
spectra measured &K (cf. inset in Figure 7:° The two sharp and 3.17 eV, respectively, may be readily identified as the
absorption bands at 1.9 and 2.1 eV, respectively, were attributedabsorptions at 2.76 and 3.175 eV reported in ref 7. The distance
to excitonic transitions on the grounds of different observations, of the bands and their relative intensity are well produced. On
like the strong temperature dependence of the line widths, thethe low-energy side of the spectrum we observe another peak
anti resonance “dip” AR observed at the high-energy side of (Z) at 1.53 eV which has not been reported so far. It is of low
peak B, and most of all, the presence of sharp fine structure intensity and mainly of &d character. Only the de—y2, and
corresponding to higher quantum number states @) for the dx, orbitals, which transform evenly under the symmetry

(xy)

TOW>N

Absorbance (arbitrary units)

with the binding part of the valence band, which is predomi-
nantly of S(3p) character with mixed-in Mo(4d) contributions.
The Fermi level is calculated to be 48.87 eV. The smallest
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Figure 8. Oscillator strength plotted as a function of the respedtive  Figure 9. Oscillator strength plotted as a function of the respedtive
vector €(k)). The main line intensities are due to promotion of an vector. (a) Contributions to the first interband transition C with
electron from the CO immediately below the highest occupied crystal parallel to the slab in the energy range-60.12 eV about the main
orbital (HOCO) to the lowest unoccupied crystal orbital (LUCO). (a) absorption (cf. Table 3). (b) The same for the interband transition D.
Contributions to the first excitonic transition A wita parallel to the

slab in the energy range af0.12 eV about the main absorption (cf. : : } P :
Table 3). The strongest line absorption is foundat= (s, %sy) consideration of configuration interaction would be necessary.

with anfs value of~9.4 x 1072, (b) The same for exciton B with a However_, supported by_ the presence of an adjacent antireso-
maximum absorption &ts = (3, %s7) and a correspondinfg of ~1.5. nance “dip”, labeled AR in the experimental spectrum and based
on our computed data, we conclude that the excitons A and B
operation described above, contribute to the oscillator strength.can be understood in terms of a resonance phenomenon. The
The small anisotropy of Z regarding the transitions in the intensities hidden under the shoulders A and B of the computed
x andy direction was to be expected. The two bands A and B, spectrum are collected in the respective sharp absorption peaks.
respectively, have already been attributed to orbitally allowed It is difficult to know about whak point we should start the
Mott—Wannier excitons by Wilson et al. It is therefore not construction of the localized excitonic states. However, we
surprising that we do not observe two sharp peaks in a modelsuggest the maximum line intensities found at atiqut= (2%
treating the electrons as delocalized throughout the solid. Two s7, %/s7) andkg = (3, ?/57), respectively.
shoulders at 2.03 and 2.27 eV, respectively, can be identified The transitions making the largest contribution to peaks A
instead. and B are of the charge-transfer type (Mgl S(3R)), exciton
Mott—Wannier excitons are formed by superimposing enough B exhibiting a greater covalent behavior. An electron is
levels in a narrow region ik space near an orbitally allowed promoted from the CO located immediately below the highest
transition to form a well-localized wave packetin Figure 8a occupied crystal orbital (HOCO) to the lowest unoccupied
we have plotted the calculated oscillator strengths as a functioncrystal orbital (LUCO). Roughly 30% of the intensity of the
of the k vector §i(k)) in an energy range o£0.12 eV about low-energy exciton is contributed by-dl transitions involving
the main intensity found at 2.03 eV. In Figure 8b the same an electronic absorption from the HOCO to the superjacent
projection technique is applied for exciton B (2.270.12 eV). LUCO in the considered region d€ space. Both of these
Analogous drawings are compiled in Figure 9a,b for the transitions are of the same symmetry and almost degenerate at
interband transitions C and D, respectively. Such figures are the samek points. Whether this coincidental degeneracy
illustrative, as they show the origin of the examined transitions enhances the exciton formation remains an open question. It
in k space. We state that absorptions along lines or points of seems probable, however, since we expect a condition of
high symmetry can only partially explain the computed absorp- resonance to exist under this assumpfon.
tion intensities; the entire IBZ has to be considered. It is Beal et al. have discussed the difference in line width of the
surprising that transitions nedirthat have been interpreted by A exciton shown in the two MoSpolytypes. The line width
Wilsor?? and later by Bromle3? as responsible for the low- in the 3R modification is about half of that found in the
energy bands A and B, respectively, make only a minimum hexagonal 2H modification, where furthermorerar 2 state
contribution to the interband absorption C. Hence, construction in the Rydberg series is resolvéd.On the other hand,
of band structures on the basis of optical data alone may leadelectroabsorption studi@gthat measure binding energies directly
to wrong results. Even though the shoulders arising in the from exciton and band edge signals have given similar values
computed spectrum are confined to a small regiok Bpace, of the binding energy for the A exciton in 3R- and 2H-MoS
we do not want to give the impression that such drawings can Beal et al. give an explanation for this apparent anomaly as
explain the sharp peaks A and B, respectively. Such reasoningdue to layer-layer interaction and coupling of the electronic
would be especially doubtful if we added that at higher energies states in the direction of the axis, which is stronger for the
(e.g. peak D) more and more transitions from differgmnt— two-layer stacking sequence found in 2H-MaBan for the
Yk pairs begin to contribute to the respective absorption bandsrhombohedral three-layer stacking in the 3R configuration. Their
in the considered energy range £0.12 eV about the band  finding is now supported by our calculation which predicts quite
maximum. The “density of transitions” for the interband a large (Mo(g)) contribution to exciton A. These orbitals are
absorptions C and D, respectively, is almost twice that of the expected to interact stronger in the 2H modification. Moreover,
peaks A and B. The more transitions contributing to an it is known that the A and B splitting is sensitive to layer
absorption band, the more likely it is that they are distributed layer interactiong:62
over a large area & space. A more involved study including In Figure 9a,b we give thia(k) plots for the absorption peaks
symmetry analysis of the respective crystal orbitals and the C and D. Both of them have contributions from sHoktectors
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with maxima along thd line. Their intensities decrease rapidly
as we move toward thg line. In contrast to the excitonic peaks

A and B they have contributions from many interband transitions
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