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A method for calculating electronic dipole-induced transitions in solids based on extended Hu¨ckel tight-
binding (EHTB) wave functions is presented. The proposed computational treatment relies on the position
formulation for intensity calculations. It is compared with the well-known velocity method that involves
differentiation of the wave functions with respect to the electron positions. The described CEDiT (crystal
electronic dipole-induced transitions) computations are applied to interpret the low-energy absorption spectrum
of polyacetylene and the group VIA transition metal dichalcogenide MoS2. Good agreement between
calculation and experimental absorption spectra is obtained. In the case of polyacetylene the first prominent
absorption band is due toπ* r π transitions about theZ point of the irreducible Brillouin zone. The high
density of states (DOS) encountered atZ can be identified as responsible for the characteristic shape of this
band. For MoS2 we plot the oscillator strengths of the first four prominent electronic transitions as a function
of thek vector in the irreducible Brillouin zone. The excitonic transitions A and B are due to resonance of
two almost degenerate interband absorptions confined to a relatively well-defined region ink space at about
kA ) (22/57, 2/57) andkB ) (1/3, 2/57), respectively. The origin ink space of the interband absorptions C and
D is also discussed.

1. Introduction

Understanding of the interaction of light with solids is of
fundamental interest not only in order to gain insight into the
solid’s electronic structure but also to help us to design new
optical devices. The physics in this area is quite rich, as are
the experimental techniques.1 Hence, it would be a very
demanding or even impossible chore to model the optical
properties of solids ranging from insulators through semicon-
ductors to metals and treating excitons, interband transitions,
and plasmons in a uniform way. Fundamental questions such
as “What is the mechanism by which matter absorbs visible or
ultraviolet light at a given wavelength? and How does it dispose
of the energy it thereby acquires?” have been answered
satisfactorily in the case of atoms and simple molecules, but in
the case of solids, experimental facts immediately overwhelm
any simple quantitative theory. However, an indispensable
prerequisite in order to describe light absorption or emission
phenomena in solids is the knowledge of its electronic structure.
Since the turn of this century when Drude put forth his noted
theory,2,3 manysmore or less sophisticatedsmethods aiming
at the description of the electronics of solids have been
developed. It has been shown that the band structure in the
band-gap region is frequently well describable within the
extended Hu¨ckel tight-binding (EHTB) theory.4-6 This usually
holds for semiconductors that have been the focus of intense
research for their optical properties and their capability to
transform visible light to electrical energy in solar devices.7-12

On the other hand, it is well documented in the literaturesstarting
with the pioneering work of Wolfsberg and Helmholzsthat
electronic transitions in molecules can be often well treated
within the extended Hu¨ckel (EHMO) approximation.13,14 In a
recent publication, we successfully applied oscillator strength
calculations to describe electronic dipole-induced transitions

(EDiTs) based on EHMO wave functions for computing
different types of transitions found in molecules, clusters, and
complexes.15 It has been challenging to investigate if the same
electronic dipole formalism can be extended to the solid state
as long as initial and final states of the transitions can be
associated with EHTB wave functions. We have therefore
developed a FORTRAN program which we call CEDiT (crystal
electronic dipole-induced transitions) that allows the modeling
of electronic absorption spectra of solids based on this approach.
A number of theoretical expressions for the description of

electronic dipole transitions have been reported. Their equiva-
lence for exact wave functions can be proven by canonical
transformations of the Hamiltonian16,17 or can be shown to be
a consequence of the off-diagonal hypervirial relation for an
arbitrary quantum mechanical operator.18 The two most com-
mon versions are the position and the velocity formulation
employing the quantum mechanical operatorsr i and ∇r i,
respectively. For molecules it is known that these two formula-
tions in general do not yield identical oscillator strengths if
applied to approximate wave functions.19,20

In this work we report applications of CEDiT calculations
on polyacetylene and the group VIA transition metal dichalco-
genide MoS2 that has been reinvestigated in a recent publica-
tion10 using theposition operator for the computation of the
transition dipole elements. It will be shown that theVelocity
formulation on general grounds cannot yield satisfactory results
if used in conjunction with extended Hu¨ckel tight-binding crystal
orbitals. Besides attempting a description of the spectral features
of the low-energy transitions that are well-known and have been
discussed in the literature,7,9,21,22we place the question of the
nature of the crystal orbitals (COs) engaged and the origin ink
space of these transitions into the foreground, facts that are often
difficult to unambiguously determine from experimental data.
This paper is organized as follows: In the next section we

describe the computational method as used in this work to model
the low-energy electronic spectra of solids. We then proceed
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with a discussion of possible deficiencies of this method. In
this connection some general remarks on the oscillator strength
calculations in extended systems are made, therewith delimi-
nating the CEDiT procedure from different approaches reported
in the literature. The last section is dedicated to applications
of CEDiT to polyacetylene and to MoS2.

2. Method

The Position Formulation. The electronic transition dipole
momentdnm

ed between two wave functionsψn andψm is defined
as23-25

The oscillator strengthfnm of the transitionn r m amounts to

Making use of the definition of the transition dipole lengthDnm

we find

wheree is the elementary charge,h is Planck’s constant,me is
the electron mass,c is the speed of light in vacuum,r i are the
electron position vectors,ν̃ is the wavenumber in cm-1 of the
transitionn r m, and l0 equals 1.085× 10-5 cm/Å2. fnm is
dimensionless. Typicalfnmvalues for electronic dipole-allowed
transitions are in the range 10-3 to 1.
The EHTB band orbitalsψik(r ) are given as follows:

wherek is the wave vector andøµ(r - R) are the atomic orbitals
located at the Bravais lattice sites defined by a set of position
vectors

in which theni run over all integers and theai are linearly
independent basic translations. Thecµ

i are the orbital coef-
ficients to be determined by the variation principle. We denote
the initial and final crystal orbital (CO) withψik and ψfk′,
respectively. As we will only consider direct transitions, we
may writek ) k′. ffi,k is then proportional to the energy gap
between the two COs at the pointk, ν̃(k), and to|Dfi,k|2, but
the factorl0 has to be doubled ifψik is occupied by two electrons.
Combining eqs 1 and 4 with 6, we find for the transition dipole
length

Hence,Dfi,k can be written as a matrix containing integrals over
atomic orbitals. The summation runs over all atomic orbitals

µ andν in the unit cells located atR andR′, respectively. While
µ andν are limited by the size of the unit cell, there is noper
serestriction for the number of unit cells denoted byR andR′.
Before addressing this point, we make a few general remarks
on tight-binding calculations that will help us to solve this
problem.
In order to keep the burden of notation minimal, we restrict

the following discussion to the simplest possible “solid”, namely,
a one-dimensional chain of equally spaced hydrogen atoms.
Once we have understood the hydrogen chain, the extension to
systems of more complicated unit cells and higher dimension
should be straightforward.
Any of theNmembers (points) of the lattice can by definition

be described by a vectorR with R ) n1a1. If we place a
hydrogen atom in every lattice point and assume that|a1| .
a0, wherea0 is the Bohr radius (a0 ) 0.529× 10-8 cm), then
according to basic quantum mechanical considerations, this
system can be described byN linear combinations of the
respective 1sH orbitals. In order to satisfy the Bloch condition

appropriate linear combinations are

where 0e k e 1/2 ranges through theN values in the first
Brillouin zone consistent with the Born-von Kármán periodic
boundary condition andR ranges over all unit cells.1 Equation
10 corresponds to the part in curly braces in eq 6 that is, the
cµ
i ’s equal 1/xN and there is nok dependence of the COs. Any
H orbital does not “feel” its neighbor and hence does not know
of its phase. Therefore all Bloch functions belong to the same
energy eigenvalue, namely,-13.6 eV per unit cell (cf. Figure
1a, left). As the Bravais lattice is infinite, there is no way of
distinguishing between different sites, and we may choose any
point to set up the origin of the coordinate system (r ) 0). If
we now decrease the lattice constant, the pure hydrogen orbital
1sH(0) begins to experience its neighbors, the 1sH(0), and with
it all others, will be more or less perturbed, and the phase of
neighboring atoms becomes crucial. Thecµ

i ’s alter their value
as a function ofk. At the pointk ) 0 (Γ point) all orbitals are
in-phase and hence only have bonding interaction, and their
energy drops to about-20 eV. The opposite holds for a
hydrogen in a Bloch function at theX point. Any hydrogen
orbital has antibonding interaction with either of its immediate
neighbors. Their energy rises to∼30 eV (cf. Figure 1a, right).
It is important to stress that 1sH(0) will only be affected by a
few nearest neighbors; thus the determination of thecµ

i ’s can
be restricted to only a few neighbor cells (NEHTB). We will see
that the same should hold for the transition dipole lengthDfi,k.
Let us now address the calculation of the transition dipole

length. For simplicity we inspect transitions at the center of
the Brillouin zone (i.e.k ) 0). Applying the above definitions,
Dfi,0 can be written as

where the sums run over only a few neighbor cellsN relative
to the reference cell atx ) 0, where the photon is supposed to
hit. We have made the assumption that all electrons in theN
next neighbor cells experience the same electric force that is
oridinarily satisfied as the wavelengthλ of visible light is on
the order of between 103 and 104 Å, whereas the lattice constant

dnm
ed ) 〈ψn|ded|ψm〉 (1)

ded) -(∑
i

er i) (2)

fnm)
8π2ν̃cme

3he2
|dnmed|2 (3)

|Dnm|2 :) 1

e2
|dnmed|2 (4)

fnm) l0ν̃|Dnm|2 (5)

ψik(r ) ) ∑
µ

cµ
i (k) {∑

R

eik‚Røµ(r - R)} (6)

R ) n1a1 + n2a2 + n3a3 (7)

Dfi,k ) 〈ψfk|r |ψik〉

) ∑
R,µ

(cµ
f (k)eik‚R)* ∑

R′,ν
(cν
i (k)eik‚R′) ×

〈øµ(r - R)|r |øν(r - R)〉 (8)

ψ(r + R) ) eik‚Rψ(r ) (9)

ψik ) ∑
R

eik‚R1sH(r - R) (10)

Dfi,0 ) ∑
M1)-N

N

∑
M2)-N

N 1

2N+ 1- |M1 - M2|
×

〈∑
µ

cµ
f øµ(x - M1a1)|x|∑

ν

cν
i øν(x - M2a1)〉 (11)
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a1 is usually on the order of angstrøms. The normalization
factor 1/(2N + 1 - |M1 - M2|) is introduced for the following
reason: in a tight-binding calculation the determination of the
coefficientscµ

i (k) must not depend on the number of neighbor
cells considered around the cell lying atR ) 0. This condition
can be easily fulfilled, as the overlap responsible for the
distortion of the atomic orbital(s) decreases rapidly with
increasing distance of the interacting cells. This, however, does
not hold for eq 11 without the mentioned normalization. Atk
) 0 all coefficients of atomic orbitals related to each other by
translation through a multiple of the lattice constanta1 are the
same. Thus, increasing the number of neighborsN would
increase the number of equal transition dipole length elements
and hence the oscillator strength. The correction is to divide
every matrix element by the number of identical ones. Con-
vergence is reached as soon as the elements〈cµ

f øµ(x +
Na1)|x|cν

i øν(x - Na1)〉 approach zero. This condition can
usually be satisfied by setting the number of neighbor cells for
a CEDiT calculation (NCEDiT) to approximately half of the
neighbor cells used in the respective band calculation:NCEDiT

≈ NEHTB/2.
We consider again the H chain sketched in Figure 1a. From

the point of view of an oscillator strength calculation both
situations are equally uninteresting. For any givenk point only
one Bloch function exists exhibiting the needed translational
symmetry. Direct dipole-allowed transitions withkψi ) kψf do
not exist.
Chemists would expect such a hydrogen chain to break apart

forming H2 molecules. Such breaking apart would be due to
vibronic coupling and is nothing else but the well-known Peierls
distortion. This leads to the situation sketched in Figure 1b.
The unit cell now contains two hydrogen atoms. For anyk
vector we can construct two Bloch functions, resulting in two
bands. The lower band runs up as we move fromΓ to X; the
upper band runs down. They almost meet atX. The only
difference between the two crystal orbitals at this point is that
the more stable CO exhibits bonding interaction within (shorter
distance) and the slightly destabilized one across the unit cell
(longer distance). They would be exactly the same if we
removed the Peierls distortion, taking us back to the situation
sketched in Figure 1a, with the important difference that we
have doubled the size of the unit cell. This means twice the

number of basis functions and thus twice the number of bands.
However, the energy range covered by the single band in Figure
1a and in the case described above remains the same. This
fact is called back-folding.4 In a Peierls distorted chain we
obviously have the possibility of computing direct electronic
transitions. The same holds for the “back-folded” hydrogen
chain, even though this is in clear contradiction to what we have
stated above. As physical properties should not depend on
assumptions above the size of the unit cell, we conclude that
we have to restrict our calculations to the primitive unit cell.
This notion is further supported by the following observation.
In a “back-folded” hydrogen chain the two crystal orbitals are
degenerate atX. Hence,Dfi,X must be equal to zero for
symmetry reasons. However,Dfi,X ) 1.18 Å is computed if
we take two basis functions to treat an equally spaced chain of
H atoms. The energy rangesthe allowed energies as we move
throughk spacesis independent of the relative phase of the
crystal orbitals; the transition dipole length is not. To obtain
the correct answer (Dfi,X ) 0 Å) in a “back-folded” chain of
equally spaced hydrogens, we would have to shift any of the
respective crystal orbitals by half of the unit cell length. This,
however, requires knowledge of the translational symmetry of
the crystal orbital, a property that is supposed to be fully taken
care of by the Bloch functions alone. Hence, the simplest solid
allowing a physically meaningful oscillator strength calculation
is a Peierls distorted H chain.
In Figure 1b we give the calculated oscillator strength as a

function of thek vector (dotted line). The highest absorption
intensity is found atΓ; the lowest atX, where it is almost zero.
This finding is not too surprising for the following reasons.
Firstly, the energy difference decreases quite dramatically as
we move fromΓ to X; secondly, the transition dipole length
decreases as initial and final crystal orbitals begin to resemble
each other more and more on going fromΓ to X (cf. eq 11).
At points of high symmetry in the first Brillouin zone (e.g.

Γ point) degenerate crystal orbitals are frequently observed.
Thus, a few words about oscillator strengths between degenerate
COs will be added. Any electron occupying the degenerate
initial crystal orbital may be promoted to any crystal orbital of
the degenerate final set. Hence, the formula for theffi,k takes
the form

Figure 1. (a) Band structure of a chian of hydrogen atoms spaced 10 and 1 Å apart, respectively. The energy of an isolated H atom is-13.6 eV.
(b) Band structure of a Peierls distorted H chain. A distortion of 0.01 Å is assumed. The computed oscillator strengthf along theΣ line is drawn
as a dashed line.
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whereGr andGq indicate the degeneracy of the initial and the
final COs, respectively. The averaged occupation number of
the initial CO is denoted bybh; the 2 in the denominator takes
into consideration that the factor 2l0 is calculated for occupied
orbitals. bh can be easily determined in diamagnetic solids by
filling up all valence bands. The same procedure turns out to
be much more cumbersome in paramagnets involving numerical
integration up to the Fermi energyεf.
Up to now we have only considered electronic dipole-induced

transitions at distinctk points. However, transitions contributing
to the electronic absorption spectrum of a solid may occur at
any k point within the irreducible Brillouin zone (IBZ), and
we will see that it is of great importance to take all these points
into account. It is not sufficient to restrict the calculation to
points or lines of high symmetry of the IBZ. High densities of
state (DOS) given by

wheren is the number of one-electron levels in the energy range
ε + dε, often encountered at these “special” points in general
do not guarantee high electronic absorption; low oscillator
strengths may destroy this notion. For the two-dimensional IBZ
we apply a numerical integration procedure as described by
Ramı́rez and Bo¨hm.26 The integralI of a periodic functionp(k)
(e.g. oscillator strengthffi(k)) can be approximated by a discrete
summation

whereωi is the weight of theith data point as determined by
simple geometrical reasoning, andN normalizes the weighting
factors to unity:N ) ∑iωi.
Other Formalisms for Intensity Calculations. In the

previous section we have introduced the theory as implemented
in the CEDiT program and used to model the low-energy
absorption spectra of polyacetylene and MoS2 (vide infra). We
proceed by discussing the oscillator strength calculations in
extended systems in a more general way in order to deliminate
our procedure from different approaches reported in the
literature.
Theoretical expressions for electronic intensities are available

in a number of equivalent forms.16,17,27 The two most common
versions are the following electronic dipole relations

where we have used atomic units; that is,p ) me ) e) 4πε0
) 1, me ande being the mass and the charge of an electron,
respectively. Herer i and∇r i are the position and the gradient
vectors for theith electron, andV is the local potential energy.
For molecules it has been shown that the position (eq 15) and

the velocity (eq 16) formulation yield identical results only under
the condition that exact wave functions and transition energies
are used in the computations. Most approximate calculations
exhibit discrepancies among the results obtained from these
expressions.19,20 The same holds for band calculations where
the situation is further complicated by the introduction of the
translational symmetry and therewith fundamentally changing
the behavior of quantum mechanical operators.
We consider one-electron interband transitions between fully

occupied and empty bands. It can be shown that orbitals not
changing their occupation under irradiation do not contribute
to the oscillator strength.24 Hence, we may drop the sums in
eqs 15 and 16 and writer and∇r for the position and velocity
operators, respectively. We first check whether these operators
if applied to Bloch sums (cf. eq 6) are hermitian. The
hermiticity (i.e. 〈n|O|m〉 ) 〈m|O|n〉*) of the position operator
r can be demonstrated as follows:28

with (ψ*)* ) ψ and r is real. It is already implicit in eq 15
and only a bit obscured by the notation that the velocity-dipole
relation

makes use of the momentum operatorp ) (p/i)∇r rather than
∇r.28 Applying integration by parts, we thus write

In order to obtain hermiticity the first term is required to vanish,
which is generally the case for “molecular” wave functions that
approach zero atr ( ∞. Blochsums, however, by construction
neither vanish atr ( ∞ nor are they periodic in the direct
Bravais lattice (i.e.ψnk(r) * ψnk(r + R)). The functional values
of Bloch sumsat infinity, i.e.ψnk(∞) or ψnk(-∞), are defined
mathematically. This does not hold, however, for the limits
(∞ themselves, as infinity in a Bravais lattice is “everywhere”.
r ( ∞ are neither distinguished nor well-defined places in the
lattice. It should be noted that there is nothing in the Born-
von Kármán periodic boundry condition that defines the value
of the Blochsumsat r ( ∞; in particular they are not forced to
be equal. The periodic boundry condition merely allows us to
equate the number of Bloch wave vectorsk in a primitive cell
of the reciprocal lattice. Thus, the infinity of the Bravais lattice
is taken into account by a vectork that becomes continuous
throughout the first Brillouin zone asR f ∞.

ffi,k ) 2l0ν̃
bh

2

∑
n)1

Gq

∑
m)1

Gr

fnm,k

Gr

(12)

g(ε) ) (dε(k)dn )-1
(13)

I )
1

VIBZ
∫IBZ p(k) dk ≈ 1

N
∑
i

ωipi(k) (14)

〈ψn|∑
i

∇r i|ψm〉 ) 〈ψn|[∑
i

r i,H ]|ψm〉 ) ωnm〈ψn|∑
i

r i|ψm〉

(15)

〈ψn|∑
i

(∇r iV)|ψm〉 ) 〈ψn|[∑
i

∇r i,H ]|ψm〉 )

ωnm〈ψn|∑
i

∇r i|ψm〉 (16)

〈ψnk|r |ψmk〉 )∫-∞

∞
ψ*nk(r ) r ψmk(r ) dr )

∫-∞

∞
ψmk(r ) r ψ*nk(r ) dr

) {∫-∞

∞
ψ*mk(r ) r ψnk(r ) dr}* ) 〈ψmk|r |ψnk〉*

(17)

pnm,k ) -
imeωnm,k

e
dnm,k
ed (18)

〈ψnk|p|ψmk〉 )∫-∞

∞
ψ*nk(r )

p
i
∇rψmk(r ) dr

) p
i ∫-∞

∞
ψ*nk(r ) dψmk(r )

) p
i

{ψ*nk(r ) ψmk(r ) -∫ ψmk(r ) dψ*nk(r )}|r)-∞
r)+∞

) ψ*nk(r ) ψmk(r )|r)-∞
r)+∞ -

∫-∞

∞
ψmk(r )

p
i
∇r ψ*nk(r ) dr
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For completeness, we finish the proof under the condition
that the first term vanishes.

Hence, the momentum operatorp is not hermitian if applied to
Blochsums. As the oscillator strengthfnm is an observable and
proportional to|dnmed|2 ) dnm

eddmn
ed (cf. eq 3), the matrix elements

dnm
ed are required to be hermitian. In Table 1 we listd12(k) and
d21(k) taken from our oscillator strength calculation on the
Peierls distorted H chain shown in Figure 1b, therewith
numerically showing the hermiticity of the operatorr .
This does not mean thatp ) (p/i)∇r is not an admissible

operator. It only demonstrates that it is not hermitian, if we
apply it to Bloch sums. It is, however, always possible to
construct well-localized wave packets out of Blochsums,
thereby fulfilling the condition of vanishing wave functions
whenr is infinite. Another possibility that will be considered
toward the end of this section is the transformation of Bloch
sumsto Bloch functions. Bloch functionsare periodic in the
direct Bravais lattice, which turnsp into a hermitian operator.
If p is applied to Blochsums, some care is, however, advisable,
as can easily be demonstrated for the Peierls distorted H chain.
The crystal orbitals at theΓ point are given by

whereψ1,0(r ) andψ2,0(r ) are the valence and conduction band,
respectively. Operating withp ) (p/i)∇r onψ1,0 and expanding
the Blochsumsin sums of Slater-type orbitals (STOs) of the
form 1sH1 ) 1sH2 ) Núe-úr yields

Hence, the oscillator strength that is proportional to the square
of

is zero according to

It is easy to show that the same holds for anyk ∈ IBZ. This
is an unexpected result and in contrast to the finding of the
position representation (cf. Figure 1b). It is difficult to see why
electronic interband transitions should be forbidden in a Peierls
distorted H chain, whereas it is known that such transitions are
responsible for the relatively intense low-energyπ* r π
absorption band in the topologically similar polyacetylene.21

Another point deserving our attention is the choice of the
unit cell. In the previous section, we have given some rather
intuitive arguments of why we should restrict the calculation
to the smallest (i.e. primitive) unit cell. In this place, we further
justify this statement and address the case where an appropriate
definition of the unit cell is not straightforward. The starting
point is once again the Peierls distorted H chain sketched in
Figure 1b. As described above, computation of the crystal
orbitals emerging from a chain of equally spaced hydrogen
atoms has to be carried out by considering exactly one hydrogen
atom per unit cell such that the translational symmetry is fully
taken into account by the phase factor eik‚R. We have already
mentioned that the energy gap appearing at theX point in Figure
1b would close upon destruction of the Peierls distortion,
therewith enforcing the hydrogens to be equally spaced. It is
furthermore not difficult to see that the energy range covered
by the unfolded chain (right-hand side of Figure 1a) and the
back-folded band are equal and limited by the all-bonding and
all-antibonding crystal orbitals. This is, however, the only
property these two “pictures” have in common! Computing the
bands with two H atoms per unit cell and starting with the most
bonding crystal orbital atΓ, the band runs fromΓ to X and
then back toΓ until the maximum energy is reached. This does
not hold for the “not-back-folded” situation, where the whole
energy range is already scanned upon going fromΓ to X.
Hence, it is clear that the slope of the band (i.e.,∂ε(k)/∂k) is
different in both cases. As various physical properties are
connected with the slope of the bands, this has far-reaching
consequences such as different Fermi levels, crystal energies,
electron velocities, and oscillator strengths.Thus a smallest
or primitiVe unit cell, as it is often called, always has to be
considered.The conception of back-folding is, however, a very
useful didactical tool and helpful to treat small distortions of
the crystal that enlarge the unit cell.4 There is no unique way
of choosing a primitive cell for a given Bravais lattice. We
restrict the discussion to the Wigner-Seitz cell without losing
generality. Since there is nothing in the definition of the
Wigner-Seitz cell that refers to any particular choice of

TABLE 1: Real and Imaginary Part of the Dipole Length Times e2 (i.e. dnm
ed) Calculated in Absorption ψ2k r ψ1k and

Emissionψ1k r ψ2k, Numerically Showing the Hermiticity of the Operator x (or r) As Applied to Bloch Sums

k point Re[d12] Im[d12] Re[d21] Im[d21]

0.0 -1.562 306 87 0.0 -1.562 306 87 0.0
0.1 -1.491 663 06 0.001 335 161 2 -1.491 663 06 -0.001 335 161 2
0.2 -1.320 137 70 0.002 041 021 3 -1.320 136 70 -0.002 041 021 3
0.3 -1.131 277 76 0.002 586 304 6 -1.131 277 76 -0.002 586 304 6
0.4 -0.994 007 05 0.002 659 343 6 -0.994 007 05 -0.002 659 343 6
0.5 -0.944 940 15 4.3298× 10-11 -0.944 940 15 -4.3298× 10-11

〈ψnk|p|ψmk〉 ) - p
i ∫-∞

∞
ψmk(r ) dψ*nk(r )

) {∫-∞

∞
ψ*mk(r )

p
i
∇rψnk(r ) dr}* )

〈ψmk|p|ψnk〉* (19)

ψ1,0(r ) ) N1
-1/2∑

R

{1sH1
(r - R) + 1sH2

(r - R)}

ψ2,0(r ) ) N2
-1/2∑

R

{1sH1
(r - R) - 1sH2

(r - R)} (20)

(p/i)∇rψ1,0(r ) ) (p/i)∇rN1
-1/2∑

R

{1sH1
(r - R) +

1sH2
(r - R)}

) (p/i)N1
-1/2∑

R

{∇r1sH1
(r - R) +

∇r1sH2
(r - R)}

) -(p/i)úN1
-1/2∑

R

{1sH1
(r - R) +

1sH2
(r - R)}

) -(p/i)úψ1,0 (21)

(p/i)∫ψ2,0(r ) ∇rψ1,0(r ) dr (22)

(p/i)∫ψ2,0(r ) ∇rψ1,0(r ) dr ) ipú∫ψ2,0(r ) ψ1,0(r ) dr )

ipúδ12 ) 0 (23)
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primitive vectors, the Wigner-Seitz cell will be as symmetrical
as the Bravais lattice.1

A physical crystal can be described by giving its underlying
Bravais lattice, together with a description of the arrangement
of atoms, molecules, ions, etc., within a particular primitive cell
(i.e. by defining a basis with respect to the Bravais lattice points).
The choice of such a basis within a Wigner-Seitz primitive
cell is not necessarily unique, even though often given by the
chemists intuition of bonding in extended structures, probably
placing the most tightly bound species into a unit cell. We
consider a one-dimensional chain‚‚‚A-B‚‚‚A-B‚‚‚A-B‚‚‚ that
consists of two different atoms A and B. Obviously, there are
two ways in which the basis regarding the one-dimensional
Bravais lattice can be defined, namely, (a) A-B and (b) B‚‚‚A.
Here, both possibilities fulfill the requirement of being a smallest
unit cell. As far as the energy calculation is concerned, the
situations a and b will yield equal values, as we would expect
it to. In the case of the crystal orbitals, things are already a bit
more subtle, as they are no longer the same but shifted by some
arbitrary phase factor. However, the hermitian operatorr is
defined with respect to the chosen unit cell. It is not too
surprising that the oscillator strength calculation based on Bloch
sumsis to some extent dependent on this choice. To a certain
degree this problem can be circumvented by transforming the
Bloch sumsψnk(r ) to Bloch functionsænk(r ). We will address
this point toward the end of this section. For the moment, we
argue that photons do not discriminate between different unit
cell choices and suggest taking the average value of the
computations a and b. The disadvantage of this unit cell
dependence is less severe than might be guessed at first glance
due to the fact that the oscillator strength is proportional to the
square of the transition dipole length. Even, if the transition
dipole lengths for different unit cell choices should have opposite
signs, only minor changes regarding the computed spectrum
are observed. In Figure 2 we show the worked out spectra of
a linear A-B chain. The distances between A-B and B‚‚‚A
are chosen to be 1 and 1.5 Å, respectively, resulting in a unit
cell size of 2.5 Å. The Slater orbitals and Coulomb integrals
are given in Table 2. The dashed and solid lines show the
spectra for an A-B and B‚‚‚A unit cell, respectively, normalized
to the main absorption band. This clearly demonstrates that
no new features arise upon a different unit cell choice, despite
the large overlaps and energies involved in this example. For
bigger unit cells and more realistic transition energies these
discrepancies are further diminished. We add that once a basis
with respect to the Bravais lattice is chosen, the computation

of the spectrum no longer allows any ambiguities and is
independent of the particular choice of the coordinate system
within the unit cell. The computations are moreover invariant
regarding the number of unit cells that are taken into account
(cf. eq 11).
The unit cell dependence of the integrals

where theæmk are Blochfunctionsof the form

is known in the literature. The following suggestion to rewrite
Ink′,mk was put forward:29,30

The physical notion in eq 26 is the observation that-i∂/∂k is
another position operator as can be seen if applied to plane
waves.

As Bloch functionsare in general eigenfunctions neither of the
momentum operator nor of the position operator, we get an
additional termΩnm that is not sensitive to the choice of the
unit cell, whereas the first term is still subject to such a
dependence. Hence, it is clear on general grounds that the above
transformation is only somewhat more acceptable than eq 24
and does not remove the overall unit cell sensitivity. By
coincidence, the quantitiesΩnm are used in the perturbative
approach by Genkin and Mednis to describe the frequency-
dependent linear electric susceptibility.31 Some authors use
|Ωnm(k)| as a measure of the oscillator strength simply neglecting
the first term in eq 26.32 The motive for this proceeding is,
however, obscure as long as the first term does not vanish.
For Blochsumsthe periodic functionsunk(r ) ) unk(r + R)

are given by the transformation

whereψnk(r ) is defined according to eq 6. For fixedr , unk(r )
is then defined as a sum over all Bravais lattice pointsR, i.e.

Figure 2. Computed spectra of a linear A-B chain. The distances
between A-B and B‚‚‚A are chosen to be 1.0 and 1.5 Å, respectively.
The dashed and solid line show the spectra for a A-B and B‚‚‚A unit
cell, respectively, normalized to the main absorption band.

TABLE 2: Coulomb Integrals Hii and Slater Exponentsúi
element orbital úi (ci) Hii/eV

A 1s 1.3 -13.6
B 1s 1.0 -10.0
H 1s 1.3 -13.6
C 2s 1.71 -21.4

2p 1.625 -11.4
Mo 5s 1.96a -8.94

5p 1.90a -5.60
4d1 3.814 (0.512)b -10.43
4d2 1.864 (0.641)b

S 3s 2.283c -19.85
3p 1.817c -10.93

aReference 63.bReference 64.cReference 65.

Ink′,mk )∫æ*nk′(r ) r æmk(r ) dr (24)

ænk(r ) ) eik‚runk(r ) (25)

∫ æ*nk′r æmk dr ) -i ∂
∂k∫æ*nk′æmk dr +

∫ u*nk′ e
[i(k-k′)‚r ]i∂umk

∂k
dr

) -i ∂
∂k∫æ*nk′æmk dr + i Ωnmδ(k - k′)

(26)

〈r 〉 ) δ(k - k′)∫e-ik′‚r (r )(-i∇k)eik‚r(r ) dr (27)

unk(r ) ) e-ik‚rψnk(r ) (28)

unk(r ) ) ∑
R

eik‚(R-r ) ∑
µ

cµ
n(k) øµ (r - R) (29)
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whereunk(r ) is indeed periodic in the Bravais lattice, according
to

The equivalence ofunk(r ) andunk(r + R′) follows immediately
as the sum in eqs 29 and 30 runs over all Bravais lattice sites.
Making use of the transformation from Blochsumsto Bloch
functionswould then allow us to write33

for the transition matrix elements in the velocity representation.
For electronic dipole-allowed transitions the second term in eq
31 is small compared toMnm and can be neglected. It would
be exactly zero for direct transitions where thek vector doesn’t
change upon absorption of a photon (orthogonality of Bloch
functions with samek and different band indices).Mnm is an
integral over a primitive unit cell in direct space. Moreover,
the operator (p/i)∇r is hermitian for all continuous functions
unk(r ) with continuous derivatives.34

Equation 32 reduces to

This expression is identical with the surface integral

wheren̂ is a unit vector in the direction of the outward normal.
It has opposite sign at two opposite points, and therefore the
integral vanishes, which proves eq 32. The same result is
obtained if we follow the arguments used to derive eq 19. As
the functionsunk(r ) are periodic in the Bravais lattice, the value
of the integral∫cellu*nk(r )(p/i)∇rumk(r ) dr remains unchanged
upon shifting the integration interval by∆r . It is, however,
always possible to choose∆r such that eitherunk(r ) or umk(r )
is zero on the surface of the unit cell, thus causing the product
unk(r ) umk(r ) to vanish.
Equations 28-31 demonstrate a way to work out the oscillator

strengths starting with Blochsumsin a less unit-cell sensitive
fashion. This can only be achieved under the condition of
transforming the Blochsumsto Bloch functionsand subse-
quently applying the velocity formulation for the transition
matrix elements. It should be noted, however, that the
transformation given by eq 29 is still subject to an indetermi-
nacy. We have already mentioned that the phases of the
coefficientscµ

n(k) are sensitive to the unit-cell choice. Thus,
the unk(r ) as calculated from the respective Blochsumswill
reflect this phase dependence. In addition, we mention that even
though Blochsumsand Blochfunctionsare closely related (cf.
eqs 29-30), they are not equal on general considerations. Bloch
functionsare constructed by multiplying a periodic function in

the Bravais lattice by a factor eik‚r at every point. Again we
take the linear H chain as an example and consider the all-
bonding linear combination as observed at theΓ point, which
is obviously periodic in the Bravais lattice. If we multiply this
crystal orbital with eik‚r at every pointr according to the
construction recipe for Blochfunctions, the hydrogen orbitals
that spread over a certain distance, say∆r along the chain, may
lose their spherical symmetry, as the values eik‚r are not constant
over the range of∆r . For Blochsumssuch a situation where
the atomic orbitals are “unbalanced” may never be encoun-
tered.35

It would be desirable to further investigate and compare the
different formalisms for computing electronic dipole transitions
in extended structures. Here we want to explore the applicability
of the position formulation to Blochsumsputting up with the
deficiency of the unit-cell sensitivity that should, however, not
be too severe a problem as discussed above.
Computational Section. The calculation of the matrix

elements (cf. eq 8) is cumbersome. The procedure used is the
same as described in refs 15 and 24, where the calculation of
the transition dipole length reduces to computations of overlap
integrals with modified Slater exponentsú to which the right
transformation properties are applied. We use the overlap
subroutine as originally implemented in ICON836 to calculate
the overlap integrals. For further reference see the description
of the ICON-EDiT package that performs extended Hu¨ckel and
oscillator strength calculations on molecules.37 Our computer
program, which we name CEDiT, has been restricted to
FORTRAN 77 standards, which makes it easily transferable to
most platforms. The crystal orbitals used by CEDiT are
computed with a modified10,38version of the EHMACC program
package.39

The EHTB crystal orbital calculations on polyacetylene and
MoS2 are described in refs 10 and 38, respectively. We give
the respective valence electron ionization energies (VOIEs) and
Slater orbitals in Table 2.

3. Applications

We now apply the computational method outlined above to
investigate the low-energy absorption spectra of the one-
dimensional polyacetylene and the two-dimensional molybde-
num(IV) sulfide. Both materials show a highly anisotropic
optical behavior and have recently attracted notable interest. It
has been shown that many of their properties can be well
described by the EHTB method.10,38,40

Polyacetylene. As the simplest member of the class of
conducting polymers, (all-trans)-polyacetylene (PA) has at-
tracted multidisciplinary interest and extensive research activity
since the early 1970s,41 when a new and more easily accessible
synthesis for PA was found.42,43 Moreover, PA is of significant
historical importance for quantum chemistry since the early
LCAO-MO studies of linear polyenes by Lennard-Jones44 and
Coulson.45 Doped PA exhibits the largest electrical conductivity
observed in any conducting polymer, with values reported in
excess of 105 S/cm,46 and exhibits interesting optical proper-
ties.21

It is now widely accepted that PA forms a Peierls distorted
ground state. Theoretical reasoning by Longuet-Higgins and
Salem,47 X-ray scattering data,48,49 nutation NMR spectros-
copy,50 and ab initio calculations51,52do support bond alternation.
Recently, it has been shown that EHTB calculations in its ASED
(atom superposition and electron delocalization) form yield
alternating C-C bond lengths at the optimized geometry.38 The
band structure is shown in Figure 3. The coordinate system is
set up such that the chain runs parallel to thez axis. Theπ
crystal orbitals (COs) are thus formed by the px orbitals located

unk(r + R′) ) ∑
R

eik‚(R-r-R′) ∑
µ

cµ
n(k) øµ(r - R) (30)

(ænk(r )|∇r|æmk(r )〉 )∫cellu*nk(r )e-ik‚r ∇r umk(r )eik‚r dr

)∫cellu*nk(r ) ∇r umk(r ) dr +

ik ∫cellu*nk(r ) umk(r ) dr
≡ Mnm+ ikMh nm (31)

∫cellu*nk(r ) p
i
∇rumk(r ) dr -∫cell (pi ∇r)*u*nk(r ) umk(r ) dr ) 0

(32)

p
i ∫cell {u*nk(r )(∇rumk(r )) + (∇ru*nk(r ))umk(r )} dr )

p
i ∫cell ∇r(u*nk(r ) umk(r )) dr (33)

p
i ∫s n̂(u*nk(r ) umk(r )) dσ (34)
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on each carbon. On the left-hand side of Figure 3 we show the
band structure in the energetically unfavorable situation with
equally spaced carbons where no band gap between theπ and
π* bands is found. Upon relaxation of the strained geometry a
band gap of 1.6 eV opens up atZ in analogy to the Peierls
distorted H chain. For a comprehensive discussion of the
subject, we refer to the literature.40 As the smallest energy
difference of the valence and conducting bands is atZ, we
expect the low-energy optical spectrum to be dominated byπ*
r π transitions starting at this symmetry point. In Figure 4
we show the calculated spectrum with theE vector lying parallel
to the chain (i.e.E|z). It was obtained by working out the
oscillator strengths at 50 equally spacedk points along the one-
dimensional irreducible Brillouin zone and fitting Gaussian lobes
with half-widths of 1000 cm-1 (≈0.12 eV) at the obtained line
spectrum. We have cut the low-energy tail of the spectrum at
the gap threshold, as we do not have computational information
in this energy region.
Recently, a new synthesis approach to PA has been intro-

duced.53 This synthetic route utilizes transition metal ions
complexed with poly(vinylbutyral) (PVB) as the polymerization
catalyst and yields highly stable blends of PA with PVB. The
absorption spectrum of this material is shown in the inset of
Figure 4 for comparison.21 The agreement between calculation
and measurement is good, even though the experimental
absorption peak is shifted to somewhat higher energy and is
broader. This problem could be addressed by adapting the half-

widths of the Gaussian lobes. It is, however, difficult to judge
whether or not such a procedure is reasonable, as there are
uncertainties in the measurement, too, like the effective conjuga-
tion lengths. Moreover, it should be noted that we have
considered a single PA chain, thus neglecting the interaction
between neighboring PA molecules. If we follow the develop-
ment of the oscillator strengths of theπ* r π transition from
the lowest to the highest energy (i.e. fromZ to Γ) with values
of 1.6 and 11.5 eV, respectively, we find the largest oscillator
strength atΓ. This reflects the topological relationship of the
PA π system with the Peierls distorted H chain and the
linear‚‚‚A-B‚‚‚A-B‚‚‚A-B‚‚‚ system discussed above. The
worked out spectrum given in Figure 4 is closely connected
with the band encountered below 12 eV in Figure 2, where the
absorption spectrum of the fictive A-B chain is depicted. On
going from lower to higher absorption energy, i.e. from the edge
to the center of the one-dimensional Brillouin zone, the oscillator
strengths computed at distinctk points slowly increase (cf. also
the dashed line in Figure 1b). Yet, we do not observe an
absorption band that continuously increases in intensity with
increasing absorption energy. The reason for this behavior can
be clearly identified as due to the high density of states (DOS)
found at the center and the edge of the Brillouin zone. Thus,
the first prominent electronic absorption band in PA is indeed
aπ* r π transition, and the characteristic shape is not governed
by the transition matrix elements but by the high DOS
encountered at theZ point (cf. eq 13).
MoS2. The structure of∞

2 [MoS2] as already determined by
Dickinson and Pauling in 1923 is shown in Figure 5a.54 The
distance between the two sulfur atoms within and across the
chalcogenide plane is about 3.16 Å. Weak van-der-Waals-type
stacking of such planes leads to two molybdenum sulfide
polytypes, namely, 2H- and 3R-MoS2. While the 2H modifica-
tion gives rise to hexagonal crystals with an A, B, A, ... stacking
sequence (space groupD6h

4 ), 3R-MoS2 belongs to a rhombo-
hedral Bravais lattice with an A, B, C, A, ... succession of the
chalcogenide planes (space groupC3V

5 ). As interlayer interac-
tion is weak, we may neglect it for the moment and focus on
the description of the band structure and the absorption spectrum
within a single MoS2 layer that extends infinitely in two
dimensions(∞2 [MoS2]).
The band calculations were performed within the extended

Hückel tight-binding method39,55modified as described in refs
10 and 38. The band structure along the hexagonal Brillouin
zone (cf. Figure 5b) symmetry lines of a∞

2 [MoS2] layer along
with the total DOS and the S(3s), S(3p), and Mo(4d) contribu-
tions are shown in Figure 6.10 The top of the valence band is
situated atΓ. From the DOS plot it is evident that the lowest
band is mainly composed of S(3s) derived states. At the top
of the valence band is the so-called dz2 band. It overlaps slightly

Figure 3. Band structure of (all-trans)-polyacetylene with bond
alternation (right: CdC 1.36 Å) as compared to the one for equal C-C
bond lengths (left: C-C 1.43 Å).

Figure 4. Calculated absorption spectrum of the firstπ* r π
absorption band of (all-trans)-polyacetylene with bond alternation. Only
transitions with the light vector parallel to the chain axis are considered.
In the inset the transmission spectrum of a spin cast film oftrans-
polyacetylene with poly(vinylbutyral) (PA-PVB) taken from ref 21 is
given for comparison.

Figure 5. (a) MoS2 layer structure with trigonal coordination of Mo.
(b) Hexagonal Brillouin zone.
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with the binding part of the valence band, which is predomi-
nantly of S(3p) character with mixed-in Mo(4d) contributions.
The Fermi level is calculated to be at-9.87 eV. The smallest
direct gap is situated atK and the smallest indirect gap goes
from Γ to K, with values of 0.68 and 0.47 eV, respectively.
These results are in good agreement with the experimental data
and also with more sophisticated calculations.56-58 The calcu-
lated band gaps are too small, however, which does not affect
our conclusions; for more details see ref 10.
The transmission spectrum of MoS2 with the light’sE vector

parallel to the slab was previously presented in 1969 by Wilson
and Yoffe,22 who introduced the labels A, B, C, D, ... to denote
the absorption peaks in the direction of increasing photon
energy. Later Beal et al. published better resolved transmission
spectra measured at 5 K (cf. inset in Figure 7).7,9 The two sharp
absorption bands at 1.9 and 2.1 eV, respectively, were attributed
to excitonic transitions on the grounds of different observations,
like the strong temperature dependence of the line widths, the
anti resonance “dip” AR observed at the high-energy side of
peak B, and most of all, the presence of sharp fine structure
corresponding to higher quantum number states (n) 2) for the

A exciton in 2H-MoS2. The bands C and D, respectively, are
due to orbitally allowed interband absorptions.
The calculated spectrum (E ⊥ z) is given in Figure 7 along

with the projected outy-polarized transitions (dashed line). To
our knowledge no absorption spectrum with theE vector parallel
to z (crystallographicc axis) has been reported. We will return
to this point later. The spectrum was obtained by fitting
Gaussian lobes with a half-width of 0.055 eV (450 cm-1) to
the computed line spectrum that resulted from considering all
transitions from the seven valence bands to the four conduction
bands (cf. Figure 6) at 190k points in the IBZ of the hexagonal
Bravais lattice. We have already mentioned that most band
structure calculations, regardless of the method applied, under-
estimate the band gaps often by roughly half an electronvolt.
For an easier comparison with experimental results we have
thus shifted the energy axis by 0.59 eV to get exact agreement
of the peaks C. Experimental and computed energies in
electronvolts of the prominent spectral features are compared
in Table 3.
By coincidence the coordinate system is set up such (cf.

Figure 5a) that transition alongy, even though not forbidden
by symmetry, only carry low intensity; see dotted line in Figure
7. Symmetry arguments would equally predict transitions inx
andy, as both axes (operators) remain the same upon reflection
at a mirror plane running through the molybdenum centers. This
requires the initial and final crystal orbitals to transform alike
upon this symmetry operation. The two calculated peaks at 2.76
and 3.17 eV, respectively, may be readily identified as the
absorptions at 2.76 and 3.175 eV reported in ref 7. The distance
of the bands and their relative intensity are well produced. On
the low-energy side of the spectrum we observe another peak
(Z) at 1.53 eV which has not been reported so far. It is of low
intensity and mainly of d-d character. Only the dz2, dx2-y2, and
dxy orbitals, which transform evenly under the symmetry

Figure 6. Band structure of the hexagonal Brillouin zone symmetry lines and density of states of a∞
2 [MoS2] layer. The S(3s), S(3p), and Mo(4d)

contributions to the DOS are projected out.

Figure 7. Calculated transmission spectrum with CEDiT in the energy
range from 1.3 to 3.3 eV. Only transitions withE parallel to the slab
are considered. Contributions fromy-polarized absorptions are shown
as a dashed line. For an easier comparison the energy axis is shifted
by 0.59 eV to get exact agreement of the peaks C. In the inset the
transmission spectrum of 3R-MoS2 taken from ref 7 is given.

TABLE 3: Energies (in eV) of Prominent Features of the
Spectra of the Two Polytypes of MoS2 Compared with the
EHTB-CEDiT Calculation; In the Last Column We Give
the Averaged Difference of Experimental and Computed
Absorption Bands

2H-MoS2 3R-MoS2 EHTB-CEDiT ∆E

Z 0.94
A 1.910 1.908 1.44 0.47
B 2.112 2.057 1.68 0.40
C 2.760 2.758 2.17 0.59
D 3.175 3.126 2.58 0.57
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operation described above, contribute to the oscillator strength.
The small anisotropy of Z regarding the transitions in the
x andy direction was to be expected. The two bands A and B,
respectively, have already been attributed to orbitally allowed
Mott-Wannier excitons by Wilson et al. It is therefore not
surprising that we do not observe two sharp peaks in a model
treating the electrons as delocalized throughout the solid. Two
shoulders at 2.03 and 2.27 eV, respectively, can be identified
instead.
Mott-Wannier excitons are formed by superimposing enough

levels in a narrow region ink space near an orbitally allowed
transition to form a well-localized wave packet.1 In Figure 8a
we have plotted the calculated oscillator strengths as a function
of the k vector (ffi(k)) in an energy range of(0.12 eV about
the main intensity found at 2.03 eV. In Figure 8b the same
projection technique is applied for exciton B (2.27( 0.12 eV).
Analogous drawings are compiled in Figure 9a,b for the
interband transitions C and D, respectively. Such figures are
illustrative, as they show the origin of the examined transitions
in k space. We state that absorptions along lines or points of
high symmetry can only partially explain the computed absorp-
tion intensities; the entire IBZ has to be considered. It is
surprising that transitions nearΓ that have been interpreted by
Wilson22 and later by Bromley59 as responsible for the low-
energy bands A and B, respectively, make only a minimum
contribution to the interband absorption C. Hence, construction
of band structures on the basis of optical data alone may lead
to wrong results. Even though the shoulders arising in the
computed spectrum are confined to a small region ink space,
we do not want to give the impression that such drawings can
explain the sharp peaks A and B, respectively. Such reasoning
would be especially doubtful if we added that at higher energies
(e.g. peak D) more and more transitions from differentψik-
ψfk pairs begin to contribute to the respective absorption bands
in the considered energy range of(0.12 eV about the band
maximum. The “density of transitions” for the interband
absorptions C and D, respectively, is almost twice that of the
peaks A and B. The more transitions contributing to an
absorption band, the more likely it is that they are distributed
over a large area ofk space. A more involved study including
symmetry analysis of the respective crystal orbitals and the

consideration of configuration interaction would be necessary.
However, supported by the presence of an adjacent antireso-
nance “dip”, labeled AR in the experimental spectrum and based
on our computed data, we conclude that the excitons A and B
can be understood in terms of a resonance phenomenon. The
intensities hidden under the shoulders A and B of the computed
spectrum are collected in the respective sharp absorption peaks.
It is difficult to know about whatk point we should start the
construction of the localized excitonic states. However, we
suggest the maximum line intensities found at aboutkA ) (22/
57, 2/57) andkB ) (1/3, 2/57), respectively.
The transitions making the largest contribution to peaks A

and B are of the charge-transfer type (Mo(dxy) r S(3py)), exciton
B exhibiting a greater covalent behavior. An electron is
promoted from the CO located immediately below the highest
occupied crystal orbital (HOCO) to the lowest unoccupied
crystal orbital (LUCO). Roughly 30% of the intensity of the
low-energy exciton is contributed by d-d transitions involving
an electronic absorption from the HOCO to the superjacent
LUCO in the considered region ofk space. Both of these
transitions are of the same symmetry and almost degenerate at
the samek points. Whether this coincidental degeneracy
enhances the exciton formation remains an open question. It
seems probable, however, since we expect a condition of
resonance to exist under this assumption.60

Beal et al. have discussed the difference in line width of the
A exciton shown in the two MoS2 polytypes. The line width
in the 3R modification is about half of that found in the
hexagonal 2H modification, where furthermore ann ) 2 state
in the Rydberg series is resolved.7 On the other hand,
electroabsorption studies61 that measure binding energies directly
from exciton and band edge signals have given similar values
of the binding energy for the A exciton in 3R- and 2H-MoS2.
Beal et al. give an explanation for this apparent anomaly as
due to layer-layer interaction and coupling of the electronic
states in the direction of thez axis, which is stronger for the
two-layer stacking sequence found in 2H-MoS2 than for the
rhombohedral three-layer stacking in the 3R configuration. Their
finding is now supported by our calculation which predicts quite
a large (Mo(dz2)) contribution to exciton A. These orbitals are
expected to interact stronger in the 2H modification. Moreover,
it is known that the A and B splitting is sensitive to layer-
layer interactions.7,62

In Figure 9a,b we give theffi(k) plots for the absorption peaks
C and D. Both of them have contributions from shortk vectors

Figure 8. Oscillator strength plotted as a function of the respectivek
vector (ffi(k)). The main line intensities are due to promotion of an
electron from the CO immediately below the highest occupied crystal
orbital (HOCO) to the lowest unoccupied crystal orbital (LUCO). (a)
Contributions to the first excitonic transition A withE parallel to the
slab in the energy range of(0.12 eV about the main absorption (cf.
Table 3). The strongest line absorption is found atkA ) (22/57, 2/57)
with an ffi value of∼9.4× 10-2. (b) The same for exciton B with a
maximum absorption atkB ) (1/3, 2/57) and a correspondingffi of ∼1.5.

Figure 9. Oscillator strength plotted as a function of the respectivek
vector. (a) Contributions to the first interband transition C withE
parallel to the slab in the energy range of(0.12 eV about the main
absorption (cf. Table 3). (b) The same for the interband transition D.
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with maxima along theT line. Their intensities decrease rapidly
as we move toward theΣ line. In contrast to the excitonic peaks
A and B they have contributions from many interband transitions
that are associated with the band crossings we observe in the
conduction band region along theT line (cf. Figure 2). The
main intensity of the interband absorptions C and D is, however,
distributed over quite large regions in the irreducible Brillouin
zone.
To our knowledge absorption spectra withE|z have not been

reported so far. They can, however, be calculated. One of our
findings is that a relatively intense absorption band should arise
between the mainlyx-polarized C and D peaks and a much
less intense one in the region of exciton B. Comparison of the
calculated intensities is rather difficult, as the presented
procedure requires full translational symmetry in the direction
of the light vector, which is certainly not fulfilled in the

∞
2 [MoS2] case. Or in other words, it is possible to compare the
relative intensities of the transitions along thez axis, as we may
compare the oscillator strengths of transitions alongx andy.
Comparison ofx andz or y andz is, however, not possible, as
the light wave certainly is affected by how many neighbor cells
it hits while propagating throughout the solid.

4. Conclusions

We have presented a way to compute the oscillator strengths
in extended structures within the EHTB method. Calculations
on polyacetylene and the transition metal dichalcogenide MoS2

have lead to promising results. The relative absorption energies
and the corresponding intensities are well reproduced. Due to
plotting of the oscillator strengths as a function of thek vector,
we conclude for MoS2 that a great deal of the absorption
intensities is contributed by excitations at low-symmetry points
within the IBZ. As we are given a computational tool to
determine the nature of the electronic transitions by inspection
of the crystal orbitals involved, it seems possible that the concept
of charge transfer, d*r d, π* r π, andσ* r σ transitions,
that has proven successful in the description of excited states
in molecules, can be extended to solids. We expect that this
procedure may help to gain insight into the electronic absorption
spectra of other extended structures.
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