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An explicit solution for the orbital stabilization energy of Hy can be given within a semi-empirical molecular-orbital ap-
proach. Correct predictions of the instability of H3 are made independent from a screening factor. Some generalizations

for X3 systems are possible.

We know the potential surface of Hy because very
accurate calculations have been carried out [1]. We
alo know that the simple HMO model leads to the
wrong predicti&n that Hj is stable [2]. But we would
like to know why this approach is not satisfactory in
the present case and what kind of result is obtained
by applying a more sophisticated semi-empirical
model. Such a study may lead to a better qualitative
understanding of the difference between Hy and the
alkali trimers. From experimental [3] as well as — for
Liz [4] — from accurate theoretical investigations, we
know that alkali trimers are stable.

Since the energy difference between the 1s and the
2s orbitals in the hydrogen atom is very large, it is ob-
vious that for a description of the ground state within
a simple LCAO MO approach we have but to include
1s orbitals. This leads in all geometric situations to
the following problem:

a—¢€ h12_€S12 h13"€S13

hlz“'eslz o —€ h23"‘€S23 =0, (1)

hi3—€S13 hy3—€Sy; a—e
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o is called the Coulomb integral, hij the resonance in-
tegral and Sy the overlap integral;j = 12,23, 13.
Without loss of information, we fix the numbering in
a way that 127N is larger than or equal to {hy3}and
that |3 is larger than or equal to |/3]. By applying
the definitions

423 = (hy3 — €S3)/(hy3 — €S13) ,
413 = (hy3 — €S13)/(hyy — €Sy5),
X=(a—e)f(hyy—€S1y),
we can write
X 1 413
1 X qy|=0, (2)
Q13 923 X
or
X3+ax+b=0,
a=—(g3;+q2,+1), b=2qy3qy; .

By definition 413 and g,3 may only take values be-
tween 0 and 1 as long as 4; and S; have similar de-
pendence on the distance between the nuclei / and j;
eq. (6). Therefore, g and b fulfil the condition

a3/27 +b2/4<0
and the solutions of eq. (2) are
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X(n)=AgcosGo +3nm), n=0,1,2, 3)
with

cos ¢ = —qq3q23 [3/(1 + 4%3 +q%3)] 32
Ag=2B0+al+adpI2.

Because of the restrictions on g3 and q,3 we know
72<¢<m and (3)2<4,<2.

The eigenvalues €(X,,) are given by

e(X,) = [a— X(mhy1/[1 - X()Sq,] - )

Inspection of (3) leads to the results given in table 1.
It is interesting that the HMO condition for D4y,
corresponds to g13 = g,3 = 1 and that in the case of 2
linear arrangement we have tosetg,3 =1 and g3 =0

which leads to the solutions X-_{ = 212 x, 0=0,

X, = —21/2 _The last solutions never appear within
the present approach, since g,3 = 0 corresponds to
hy3 =853 =0 and this means necessarily sy3 = Sy3 =
0 because the largest difference in distance d between
23 and 13 is dy, td 3 <2d;3 and the decrease ofS,-]-
is approximately exponential.

In a next step we introduce the assumption that
the distance dependence of hi; is approximately pro-
portional to the overlap integral:

h,-,- ~ Sy fWHy, Hy) )
The best. known example of this type of approxima-
tion is the Wolfsberg—-Helmholz approach [5] which
is successfully used in extended Hiickel calculations
[6]. Other treatments of this type have been discuss-
ed by Longuet-Higgins [7], Ballhausen and Gray [8]
and Yeranos [9]. Inserting (5) into the definition
equations for g,5 and g3 leads to the interesting re-
sult

Table 1
Values of X; for the two extreme situations

Xi

91374230  qu3=q23=1
n=0-X_, =Aocos(%¢)4 1 1
n=2 —->X6=Aocos(l3i¢+'§12r) 0 1
n=1->X;=Agcos(zo+35m) -1 -2
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423 =823/81; and qy3=813/8,, ©)
which shows clearly that g,3 and g5 cannot be varied
independently:

413 = (513/523)423 -

All the mentioned approximations lead to the same
formula for homonuclear systems

hif =KaS,-]~ s (Sa)

where K is an empirical constant.
For the orbital energy we get

Gl- = O((l —X,—S12K)/(1 —X,-Slz) . (7)

By setting a = ayy, the orbital stabilization energy
AE 4, of Hy is

AEorb(H3)
= + — 30y .
H ©1-X,81,  1-X,Sp, |
The orbital stabilization energy of H, + H is equal to

1+KSy
Eorb(H2) +Eorb(H) = [QﬂH _iTS;& +0£H] - 30£H .
2

In order to discuss the stability of Hy relative to H, +
H, we have to compare these two orbital stabilization
energies:

A= AEorb(H3) - [AEorb(Hz) + AEorb(H)] >

A:a 2 - 1_X1S12K _1+KSH2
H 1—X1S12 ].+SH2 ]
1—-XpS,K
ek @

After some algebraic manipulation we find the follow-
ing interesting result:
1-K) yS12

(1 + SH;)(I _X1S12)(1 ““Xoslz)

A=

X [28y, /812 = X1 XoS12(3+ Su,)
+X0(1—SH2)+2X1] . )

This result shows that the sign of A is independent of
K, aslong as K is larger than 1. Smaller values of K
never make sense, This means that K appears just as a
scaling factor and does not influence the qualitative
predictions. Since the expression
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1-K) oSy
(1 +8y,)(1- XS12)(1 XyS12)

can only be positive or zero, the sign of A is determin-
ed by the relative magnitude of

and 2X; . The first of these expressions can only be
positive, since X; is negative and 2X; always lies be-
tween —2 and —4. By inserting the expressions for X
and X, into the second part of eq (9) and by apply-
ing the substitution ¢; = ¢ +2 smand ¢y = ¢ +2 37
we get

K)(l +SH )(1 —X1S12)(1 X0S12) 0

A=(1-

AO = SH2 /S12A0 + COS¢1 (10)
+ [1 —SH2 ‘A0S12(3 +SH2)COS¢1]%COS¢0 .

Since A alone can influence the sign of A we can
restrict the discussion to Ag. ¢ can only take values
between 3 7 and 7. Therefore it is easy to see that

<o <, —3)Y2<cos¢; <
and
%ﬂ<¢0‘<%1r, 0<cos¢0<%.

It is important to notice that the interdependence of
4,3 and g5 leads to ¢y =to+in and ¢, =%¢+§1r
which means that for discussing eq. (10) we can e.g.
start at ¢ = % m and 1= 1r and advance in equal in-
crements to ¢ = 1r and q>1 1r This leads to the
conclusion that for any reasonable value of §;, and
SH the single situation in which ¢ might become
negatlve is cos ¢ = 0, which corresponds toq;3=

43 = 0 and therefore A = (3)V/2. But 13 =q93 =0
corresponds to infinite distance between H, and H.
In this situation the value of S}, is equal to that of
S, and therefore

= @2 - cosGm) =0

The value of A at infinite distance between H, and H
is predicted to be equal to zero as it should be.
Within the model there is in any case no net orbit-
al stabilization for Hy relative to H, + H. This means
that H is predicted to be unstable in any geometric
arrangement, It is now obvious why the HMO model
does not lead to correct predictions regarding the sta-

Ag=1/4y + cosgy
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bility of H;. One of the failures is the unreasonable
condition g,3 = 1,q13 = 0. The other one is that the
HMO eigenvalues are equal to

eX,)=a—Xm)hy,y ,

instead of [a — X (n)h151/[1 - X (n)Sq5].

But 1 — X (n)S;, cannot be set equal to one since
otherwise the splitting between bonding and anti-
bonding orbitals is largely underestimated. This can
easily be shown by looking at the splitting of the bond-
ing and antibonding orbitals in H,. The orbital stabiliza-
tion energy AE™ of H, is within the approach (1) equal
to

and the destabilization energy is equal to
AE"=(h12—Sa)/(1—S). (llb)

Since Sy, is calculated to be 0.618 [10], this means
that IAE | is more than four times larger than |AE™|.
If this result is reasonable, it should be possible to set
| AE”| + |AEY| approximately equal to the energy
E =11.37 eV [11] needed for the B Izt «x1z}
transition: (12)

El~ |AE*| +|AE™|= 2(hyp — aS)/(1+S) (1-5).

The orbital stabilization energy is for H, equal to 3
of the dissociation energy Dy [12]. Therefore we get

Eg ~Dp/(1-5), (13)

which leads to Ej (calc) = 4.477 eV/(1 — 0.618) =
11.7eV.

It is interesting that eq. (13) gives in addition a
reasonable explanation for the comparatively- small
B1x} « X 13¥ transition energy observed in the al-
kali dimers. They have much smaller dissociation
energies [11] but only slightly lower values for the
(ns|ns) overlap integral, e.g. SNa, =~ 0.6.

We can now make another conclusion. Eq. (1) and
therefore eq. (6) does not only apply to Hy. They de-
scribe linear combinations of three equivalent ns orbit-
als in any X5 system. This means that within the ap-
proach applied it is not possible to describe a stable
homonuclear X3 molecule such as Liz, Naj or Kj.
The main dissimilarity between these systems and Hj
lies in our initial condition that the energy difference
between the 1s orbitals and the 2s, 2p orbitals in the
hydrogen atom is very large. There is no equivalent
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condition for the alkali trimers. It is also clear that a
minimal basis set is not sufficient to describe any
stable excited state of Hy. Such states have been dis-
covered recently by Herzberg [13]. Within a LCAO
MO approach atomic orbitals with n > 2 have to be
included.
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