Substituenteneinfluss auf die Reaktionsgeschwindigkeit: Methanolyse substituierter Benzoylchloride

1. Lernziele

- Kennenlernen einer auf Leitfähigkeitsmessung basierenden Messmethode zur Erfassung der Reaktionsgeschwindigkeit
- Vertrautheit mit den Begriffen Aktivierungsenergie, Geschwindigkeitsgesetz, Reaktiongleichung
- Hammett-Gleichung und "lineare Freie Enthalpie-Beziehungen"

2. Aufgabenstellung

- Man untersuche den Substituenteneinfluss m- und p- substituierter Benzolderivate durch Bestimmung der Reaktionsgeschwindigkeit der Methanolyse unterschiedlich substituierter Benzoylchloride.

3. Theorie

Die Beeinflussung der Reaktivität organischer Verbindungen durch Substituenten wird häufig durch empirische oder semiempirische quantitative Zusammenhänge beschrieben. Diese basieren auf der experimentellen Beobachtung, dass Geschwindigkeits- und Gleichgewichtskonstanten verschiedener Reaktionen von Verbindungen ähnlicher Struktur durch bestimmte Substituenten in gleichartiger Weise beeinflusst werden.

Von besonderer Bedeutung ist die *Hammett-Gleichung* (s. Lit. a,c.), die für Geschwindigkeits- oder Gleichgewichtskonstanten von Reaktionen an Seitenketten m- und p-substituierter Benzolderivate Anwendung findet. Sie korreliert die Geschwindigkeitskonstante k_X einer bestimmten Seitenkettenreaktion der X-substituierten Komponente mit der entsprechenden Geschwindigkeitskonstanten k_0 der un-(H-)substituierten Komponente in Form des Zusammenhangs

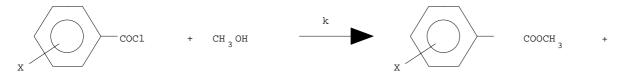
$$\log(k_x/k_0) = \sigma_x \rho_R$$
 Gl. (1)

Darin bezeichnet σ_X eine für den Substituenten X festgelegte *Substituentenkonstante*, während die *Reaktionskonstante* ρ_R einen spezifischen Parameter für die ablaufende Reaktion darstellt.

Eine analoge Beziehung findet man für die Gleichgewichtskonstante K_X bzw. K_0 von Seitenkettenreaktionen der X- bzw. unsubstituierten Komponenten:

$$\log(K_x/K_0) = \sigma_x \rho_R$$
 Gl. (2)

Die Parameter σ_X und ρ_R werden dadurch festgelegt, dass für das Dissoziationsgleichgewicht der Benzoesäuren ρ_R =1 gesetzt wird:


$$\log(K_x^a/K_0^a) \equiv \sigma_x \qquad (\rho_R \equiv 1)$$
 Gl. (3)

mit: K_x^a bzw. K_0^a Säurekonstanten der X-substituierten bzw. unsubstituierten Benzoesäure

Gl. (3) ist die Grundlage für die experimentelle Ermittlung von Werten für σ_X und ρ_R , wie sie in den beigelegten Tabellen zusammengestellt sind.

Im vorliegenden Experiment soll der Substituenteneinfluss auf die Reaktionsgeschwindigkeit am Beispiel der *Methanolyse m- und p-substituierter Benzoylchloride* gemäss

Kinetik

untersucht werden. Diese wird in grossem Überschuss von B (Methanol) durchgeführt,

 $C_B \approx const.$

so dass ein Geschwindigkeitsgesetz (pseudo-)erster Ordnung

$$Gl. (4)$$

mit $k^* = kC_B \approx const.$ gilt.

Bezeichnet man mit C_A bzw. C_C die Konzentrationen von A bzw. C zu einem bestimmten Zeitpunkt t des Experimentes und mit C_{Ao} bzw. C_{Co} die Anfangskonzentration zur Startzeit t_0 des Experiments, so folgt auf Grund der Reaktionsgleichung die Bilanzbeziehung

$$C_C - C_{Co} = C_{Ao} - C_A$$
 Gl. (5)

Unter den gewählten experimentellen Bedingungen (Methanolüberschuss!) läuft die Reaktion bis zum vollständigen Verbrauch der Komponente A ab, so dass gilt:

$$C_A \to 0$$
 und $C_C \to C_{C\infty} = C_{Ao} + C_{Co}$ für $t \to \infty$

Durch Integration von (4) und Kombination mit (5,6) resultiert für die Geschwindigkeitskonstante pseudo-erster Ordnung:

$$k^* = kC_B = -\frac{1}{t-t_0} \ln \frac{C_{Cx} - C_C}{C_{Cx} - C_{Cx}}$$
 Gl. (7)

Im vorliegenden Experiment wird der zeitliche Reaktionsablauf durch Messung der *Leitfähigkeit L* des Reaktionsgemischs verfolgt. Diese ist in guter Näherung eine lineare Funktion der freigesetzten HCl-Konzentration C_C .

$$L = \overline{K}C_C$$
 $\overline{K} = const.$

Damit folgt aus (7):

$$k^* = kC_B = -\frac{1}{t-t_0} \ln \frac{L_{\infty}-L}{L_{\infty}-L_0}$$
 mit $L(t_0)$
$$L_{\infty} = L \ (t = \infty)$$

Durch Bestimmung des Verhältnisses

$$\log(k_X^*/k_0^*) = \log(k_X/k_0)$$

für verschiedene m- und p-Substituenten X kann die Gültigkeit der Hammett-Gleichung (*Gl.* (1)) verifiziert werden.

Tabelle 1: von Hammett Substituentenkonstanten σ_X (ausLit.d.)

nthates - Paylor	Meta			Para		
Group		Estimated limits of uncertainty	influse out	•	Estimated limits of uncertaint	
		0.02		-0.170	0.02	
-CH ₁	-0.069			-0.151	0.02	
-CH ₂ CII ₂	-0.07	0.1		-0.151	0.02	
-CH(CH ₃) ₃	0.10	0.00		-0.131	0.02	
-C(CH ₁) ₁	-0.10	0.03		-0.01	0.05	
-C.H.	0.06	0.05		0.042	0.03	
-3,4(CH),				0.54	0.02	
-CF ₁	0.43	0.1			0.02	
-CN	0.56	0.05		0.660		
-COCII,	0.376	0.02		0.502	0.02	
-CO2C2H2	0.37	0.1		0.45	0.1	
-CO ₂ H	(0.37)	0.1		(0.45)	0.1	
-CO ₂ -	-0.1	0.1		0.0	0.1	
-CH2Si(CII2)2	-0.16	>0.1		-0.21	>0.1	
-Si(CH ₂) ₂	-0.01	0.1		-0.07	0.1	
-Si(CtHs):				0.0	0.1	
-Ge(CH ₂) ₂				0.0	0.1	
-Ge(C,H,),				0.0	0.1	
-Sn(CII ₁) ₁				0.0	0.1	
-Sn(C ₂ H ₃) ₃				0.0	0.1	
-NH.	-0.16	0.1		-0.66	0.1	
NHCII,	ekeitsgesetz (p	seudo-)erster (-0.84	0.1	
N(CH ₂),				-0.S3	0.1	
NHCOCH:	0.21	0.1		0.00	0.1	
-N(CH ₂) ₂ +	0.88	>0.2		0.82	>0.2	
-NO ₂	0.710	0.02		0.778	0.02	
-PO ₂ H-	0.2	>0.1		0.26	>0.1	
-AsO ₂ H -				-0.02	>0.1	
-OCH,	0.115	0.02		-0.268	0.02	
-OC-II,	0.1	0.1		-0.24	0.1	
-0(CH ₁) ₂ CH ₁	0.1	0.1	men inn	-0.25	0.1	
-OCH(CIL):	0.1	0.1		-0.45	0.1	
-O(CII,),CII,	0.1	0.1		-0.32	0.1	
-O(CII,),CII,	0.1	0.1		-0.34	0.1	
-OC.H,	0.252	0.02		-0.320	0.02	
-011	0.121	0.02		-0.37	0.04	
-OCOCII.	0.39	0.1		0.31	0.1	
-SCH,	0.15	0.1		0.00	0.1	
-SC-II,	0.70	aponenie A ah		0.03	0.1	
-SCII(CII ₂),				0.07	0.1	
	0.25	0.1		0.15	0.1	
-SII -SCOCII,	0.39	0.1		0.44	0.1	
	0.30	0.1		0.52	0.1	
-SCN	0.50	0.1		0.49	0.1	
-SOCII.	0.52	0.1		0.72	0.1	
-SO ₂ CH ₂	0.60			0.57	0.1	
-SO.NII.	0.46	0.1			>0.1	
-S(CII ₂) ₂ +	1.00	>0.1		0.90		
-SO ₂ -	0.05	>0.1		0.00	>0.1	
-SeCII ₁	0.1	0.1		0.0	0.1	
-F	0.337	0.02		0.062	0.02	
-Cl	0.373	0.02		0.227	0.02	
-Br	0,391	0.02		0.232	0.02	
-I	0.352	0.02		0.18	1.0	
-10,	0.70	0.1		0.76	0.1	

<u>**Tabelle 2**</u>: Ausgewählte Reaktionskonstanten ρ_R nach Hammett (aus K. Schwetlick, Kinetische Methoden zur Untersuchung von Reaktionsmechanismen (1971), 286ff)

Reaktion	Lösungsmittel	Temp. [°C]	Q
ArCOOH + (C ₆ H ₅) ₂ CN ₂ →	Toluol	25	2,2222)
Arcooch(C,Hs)2+N2	Äthanol	30	0,94
ArCH_COOH + (C ₆ H ₆) ₂ CN ₂ →	Āthanol	30	0,3533)
$ArCH_2COOCH(C_6H_5)_2 + N_2$			11
$ArCH_2CH_2COOH + (C_6H_5)_2CN_2 \rightarrow ArCH_2CH_2COOCH(C_6H_5)_2 + N_2$	Athanol	30	0,1833)
ArCOOC,H, + OHO - ArCOOO + C,H,OH	60% Aceton	0	2,44
		15	2,35
LIACOHCTIRSSUII Hamomod (a.		25	2,26
b) Leitlähigkolfselektroden		40	2,18
12 L. Leitfähigkeitsmessonde CDC6	70% Dioxan	25	1,83
schliessen.	95% Butyl- cellosolve	25	2,85
	75% Athanol	25	2,19
Reputalistonierer CDM210 fibe	0.60/	25	2,54
	07 00/	30	2,43
ArCH_COOC_H _s + OH + →	87,8% "	30	0,82
ArCH,COO+ C,H,OH	0.,0/0 11	1 . 1	-,
ArCH_CH_COOC_H, + OH - + C_H_OH	87,8% "	30	0,5934)
ArCOOC,H; + H,O HO ArCOOH + C,H,OH	60% ,,	100	0,14
Arcooch, + H20 He ArcooH + CH2OH	99,9% H2SO4	4.5	-335)
ArCONH + OH+ + ArCOO+ + NH3	H.O	100	1,07
Arconh, + H,O H Arcooh + NH,	H,O	100	0,12
ArCOOCH ₃ + C ₆ H ₃ NH ₂ →	Nitrobenzol	SO	0,52
$ArCOONHC_4H_5 + CH_3OH$ $ArCOOCH_2 + CH_3OH \rightarrow ArCOOCH_3 + HCI$	Methanol	0	1,47
ArCN + Has one Arc(SH)=NH	Āthanol	60,6	2,15
Archo + Hon + Arch(oh)cn Archo + Hannhconha +	95% Äthanol	20	2,33
$ArCH = NNHCONH_2 + H_2O$; $pH = 1,75$	25% Athanol	25	0,9136)
pH = 7	25% Āthanol	25	0,0736)
ArCH,CH,J + C,H,O+	Āthanol	30	2,0737)
→ ArCH=CH ₂ + C ₂ H ₄ OH + J ⁹	s Konduktomes	assen de	
ArCH.CH.Br + C.H.O⊕ →	Athanol	30	2,1437)
ArCH=CH ₂ + C ₂ H ₃ OH + Br ³ ArCH ₂ CH ₂ CI + C ₂ H ₃ O ⁵ →	Āthanol	30	2,61%)
ArCH ₂ CH ₂ CH ₂ CH ₃ OH + Cl ⁹ ArCH ₂ CH ₂ C(CH ₃) ₂ + C ₂ H ₃ O ⁹ +	Äthanol	30	2,7527)
\rightarrow ArCH=CH ₂ + C ₂ H ₃ OH + S(CH ₃) ₂		1	
$ArCH_2CH_2F + C_2H_3O^{\circ} \rightarrow$ $ArCH=CH_2 + C_2H_4OH + F^{\circ}$	Athanol	30	3,1223)
ArOs + C.H.J - ArOC.H. + Jo	Āthanol	42,5	-0,99
ArOH + CH3COBr → CH3COOAr + HBr	Essigester	0	-1,45
ArNH, + C.H.COCI + C.H.CONHAr + HCI	Benzol	25	-2,78
The Total To	90% Aceton	35	-3,30

4. Apparatur

Die Leitfähigkeitsdaten werden mit einem Digital-Konduktometer CDM 210 (RADIOMETER) gemessen und auf den PC übertragen.

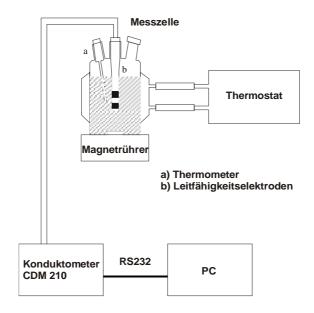


Abb. 1

5. Experimentelle Durchführung

a: Vorbereitung der Messzelle

- Die Messzelle mit Teflonrührer wird auf dem Magnetrührer montiert und mit den Schlauchleitungen am Thermostaten angeschlossen. Anschliessend werden das Thermometer und die Leitfähigkeitselektroden (CDC 641 T) in das Messgefäss eingeführt, fixiert und an den entsprechenden Anschlüssen des Konduktometers CDM 210 angeschlossen. Das untere Ende der Leitfähigkeitssonde soll ca. 15 mm über dem Rührer liegen.

Vorsicht:

Die teuren Leitfähigkeitssonden sind mit grösster Vorsicht zu behandeln. Allfällige Beschädigungen sofort dem Assistenten melden!

- Anschliessend schaltet man den Thermostaten ein (Temperatur je nach Experiment, siehe unten.) und füllt in die Zelle ca. 80 ml Methanol p.A. Merck. Die Zelle wird sofort verschlossen und der Magnetrührer in Betrieb gesetzt, so dass eine schnelle Durchmischung gewährleistet ist. Es ist darauf zu achten, dass die Leitfähigkeitselektroden vollständig im Methanol eintauchen und das Thermometer etwa in halber Füllhöhe des Methanols montiert ist. Bevor eine Messung gestartet werden kann, muss solange gewartet werden, bis sich die Temperatur am Thermometer und die des Thermostaten um höchstens 0.1°C unterscheiden.
- Die Hamilton-Spritze für die Eindosierung der Benzoylchloride muss vor Gebrauch gründlich gereinigt und *getrocknet* werden.

b: Ablauf der Messung

Datenerfassung:

Die Leitfähigkeitsmessonde CDC641T, welche gleichzeitig die Leitfähigkeit, als auch die Temperatur im Reaktionsgefäss misst, ist an das Konduktometer CMD210 angeschlossen, welches seinerseits über das "Spezial-(RS232)-Kabel" (A95X591) mit dem Seriellen Port (COM1) des PC's verbunden ist.

Nachdem der PC gestartet wurde, wird das Konduktometer CDM210 eingeschaltet und danach das LabView-Programm cdm210v100401a.11b gestartet.

Das Programm registriert die gemessene Leitfähigkeit als Funktion der Zeit entsprechend dem im Programm vorgegebenen Messtakt ("timestep").

(Einstellungen für die Serielle Schnittstelle: 9600 Baud, 8 Datenbits, 1 Stopbit, keine Parität)

Experiment:

80ml Methanol werden in das Reaktionsgefäss gegeben, dieses verschlossen, der Rührer eingeschaltet und die Leitfähigkeitsmesszelle etwa 1.5cm oberhalb des Rührers positioniert.

Im LabView-Programm wird der Messtakt auf 2-3s festgelegt. Die Datenaquisition wird durch drücken auf den RUN-Knopf gestartet.

Sobald Stabilität der gemessenen Leitfähigkeit L, sowie der Temperatur im Messgefäss erreicht ist, werden 0.1-0.2ml des zu untersuchenden Benzoylchlorids mit der Hamiltonspritze zugegeben. Beobachten Sie den Verlauf der Leitfähigkeitsänderung mit der Zeit. Die Messung wird mit dem STOP-Knopf angehalten, sobald sich das System equilibriert hat (ungefähr nach 1000-2000 Sekunden). Das Programm fordert Sie auf einen Dateinamen für die Ablegung der eben aufgenommenen Messdaten anzugeben.

Die Apparatur wird für die nächste Messung gereinigt und getrocknet.

b1. Geschwindigkeitskonstanten der Methanolyse p-substituierter Benzoylchloride

Temperatur: 25°C

Ermittelt werden die Geschwindigkeitskonstanten der Methanolyse einer Reihe p-substituierter Benzoylchloride:

mit X = H, F, Cl, Br, NO_2 , C_6H_5 , CH_3

Für jede Substanz sind 3 unabhängige Messungen durchzuführen.

b2. Vergleich der Geschwindigkeitskonstanten der Methanolyse m- und p-substituierter Benzoylchloride

Temperatur: 25°C

Untersucht werden die Verbindungen mit X = H, F, Cl, Br

x — cocl

In jeweils *3 unabhängigen Messungen* für jede Komponente werden die Geschwindigkeitskonstanten ermittelt.

b3. Temperaturabhängigkeit der Geschwindigkeitskonstanten der Methanolyse von m- und p-Fluorbenzoylchlorid

Man informiere sich anhand von Lit. a-c über die Temperaturabhängigkeit der Geschwindigkeitskonstanten.

In jeweils 3 unabhängigen Messungen bestimmt man die Geschwindigkeitskonstanten von m-

und p-Fluorbenzoylchlorid bei 4 - 5 verschiedenen Temperaturen im Bereich zwischen ca. 20 - 40°C.

6. Auswertung der Daten

- Formen Sie Gleichung (8) so um, dass sie die Leitfähigkeit als Funktion der Zeit erhalten L(t).
- Bereinigung der Messdaten: Datenpunkte bis zur Zugabe des Benzoylchlorids aus dem Datenfile herauslöschen. Artefakte (Datenpunkte, die offensichtlich als Messfehler, z.B. Messwert 0.00, identifiziert werden können) löschen um das Fitresultat nicht zu verfälschen.
- Fitten Sie unter Anleitung des Assistenten zur Bestimmung der Geschwindigkeitskonstanten k* für die Methanolysereaktion die oben erhaltene Funktion L(t) an Ihre gemessenen Leitfähigkeitsänderungen (Parameter: k*, L_{inf}, L₀, t₀).
- (*zu b1*): Man berechnet $\log(k_X/k_0)$ für die unterschiedlich substituierten Komponenten und trägt die Resultate gegen die tabellierten Werte von σ_X auf. Mit Hilfe von MathCAD bestimmt man dann die Grösse ρ_R für die Methanolysereaktion der p-substituierten Verbindungen in einer linearen Regression (sofern die Auftragung der erhaltenen Resultate hinreichend linear ist!). Man diskutiere die Resultate und versuche, sie zu interpretieren.
- (zu b2): Unter Verwendung der tabellierten, aus der Ionisation substituierter Benzoesäuren bestimmten Werte von σ_X der para- und meta-Substituenten trägt man die ermittelten Werte der Geschwindigkeitskonstanten gesondert für die para- und meta-Substituenten auf und bestimmt in beiden Fällen den resultierenden Wert der Reaktionskonstante ρ_R. Man vergleiche die beiden Werte von ρ_R und überprüfe, inwieweit die geforderte Unabhängigkeit der Reaktionskonstante von der Art und Position der Substituenten X auf die hier untersuchte Methanolysereaktion der Säurechloride zutrifft. Man versuche eine Diskussion allfälliger Diskrepanzen von ρ_R und überlege sich, wie bei den tabellierten σ_X-Werten die Unterschiede für para- und meta-Substitution erklärt werden können.
- (*zu b3*): Durch eine geeignete Auswertung des Funktionsverlaufs k(T) versuche man, die Aktivierungsenthalpien und -entropien der entsprechenden Reaktionen zu ermitteln und vergleichend zu diskutieren.

7. Fragen

- Man versuche, einen Zusammenhang zwischen k_X bzw. K_X und der freien Aktivierungsenthalpie ΔG^{\ddagger}_X bzw. der freien Standardenthalpie $\Delta G^{\circlearrowleft}_X$ einer bestimmten Reaktion der X-substituierten Komponente zu finden und überlege sich, wie die Gl. (1,2) für die betreffenden freien Enthalpiegrössen zu formulieren sind. Die Hammettgleichung ist ein Beispiel einer "linearen freien Enthalpie-Beziehung", auf die in Lit. b. näher eingegangen wird.
- Durch Integration von (4) und Kombination mit (5,6) resultiert für die Geschwindigkeitskonstante pseudo-erster Ordnung: $k^* = kC_B = -\frac{1}{t-t_0} \ln \frac{C_{C\infty}-C_C}{C_{C\infty}-C_{C_0}}$. Beweisen Sie diese Gleichung.

- Wie funktioniert ein Leitfähigkeitsmessgerät?
- Wie kann man aus der Temperaturfunktion k(T) die Aktivierungsenthalpien und -entropien H[‡] und S[‡] der entsprechenden Reaktionen ermitteln?

8. Literatur

- a. K. Schwetlick, Kinetische Methoden zur Untersuchung von Reaktionsmechanismen (1971)pp. 286 ff.
- b. P.W. Atkins, Physical Chemistry 6th edition, Kapitel 27.6.
- c. L.P. Hammett, Physikalische organische Chemie (1970), pp. 345ff.
- d. D.H. Mc Daniel, H.C. Brown, J.Org.Chem. 23 (1958) 420.
- e. Försterling-Kuhn, Physikalische Chemie in Experimenten (1971), pp. 237ff.
- f. Geräteanleitung Konduktometer CDM 210.
- g. Anhang: Beschreibung Versuchsprogramm.